Browse > Article
http://dx.doi.org/10.14478/ace.2018.1036

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization  

Nodora, Kerguelen Mae (Division of Advanced Material Engineering, Kongju National University)
Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.3, 2018 , pp. 330-335 More about this Journal
Abstract
A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.
Keywords
organic-organic hybrid composite; PEDOT; PSMA; simultaneous co-vaporized vapor phase polymerization; electrical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Kim, E. Kim, Y. Won, H. Lee, and K. Suh, The preparation and characteristics of conductive poly(3,4-ethylenedioxythiophene) thin film by vapor-phase polymerization, Synth. Met., 139, 485-489 (2003).   DOI
2 B. Winther-Jensen, D. W. Breiby, and K. West, Base inhibited oxidative polymerization 3,4-ethylenedioxithiophene with iron(III)tosylate, Synth. Met., 152, 1-4 (2005).   DOI
3 J. P. Lock, S. G. Im, and K. K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films, Macromolecules, 39, 5326-5329 (2006).   DOI
4 M. Fabretto, M. Muller, C. Hall, P. Murphy, R. D. Short, and H. J. Griesser, In-situ QCM-D analysis reveals four distinct stages during vapour phase polymerisation of PEDOT thin films, Polymer, 51, 1737-1743 (2010).   DOI
5 J. S. Choi, K. Y. Cho, and J.-H. Yim, Micro-patterning of vapor-phase polymerized poly(3,4-ethylenedioxythiophene)(PEDOT) using ink-jet printing/soft lithography, Eur. Polym. J., 46, 389-396 (2010).   DOI
6 Y.-H. Han and J.-H. Yim, A study on the electrical and optical properties of micro-pattern of Polypyrrole (PPy) by using vapor phase polymerization, Polymer(Korea), 34, 450-453 (2010).
7 J. Jang and B. Lim, Facile fabrication of inorganic-polymer core shell nanostructures by a one-step vapor deposition polymerization, Angew. Chem., 115, 5758-5761 (2003).   DOI
8 M. Choi, B. Lim, and J. Jang, Synthesis of mesostructured conducting polymer-carbon nanocomposites and their electrochemical performance, Macromol. Res., 16, 200-203 (2008).   DOI
9 W. E. Tenhaeff and K. K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD, Adv. Funct. Mater., 18, 979-992 (2008).   DOI
10 C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A G. MacDiarmid, Electrical conductivity in doped polyacethylene, Phys. Rev. Lett., 39, 1098-1101 (1977).   DOI
11 P. A. Levermore, L. Chen, X. Wang, R. Das, Donal and D. C. Bradley, Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes, Adv. Mater., 19, 2379-2385 (2007).   DOI
12 M Irimia-Vladu, "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future, Chem. Soc. Rev., 43, 588-610 (2014).   DOI
13 M. Gerard, A. Chaubey, and B. D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron., 17, 345-359 (2002).   DOI
14 N. K. Guimard, N. Gomez, and C. E. Schmidt, Conducting polymers in biomedical engineering, Prog. Polym. Sci., 32, 876-921 (2007).   DOI
15 D. M. Welsh, A. Kumar, E. W. Meijer, and J. R. Reynolds, Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene)derivatives, Adv. Mater., 16, 1379-1382 (1999).
16 K. S. Lee, J. H. Yun, Y.-H. Han, J.-H. Yim, N.-G. Park, K. Y. Cho, and J. H. Park, Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO-and Pt-less counter electrodes, J. Mater. Chem., 21, 15193-15196 (2011).   DOI
17 J. M. D'Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors, ACS Nano, 8, 1500-1510 (2014).   DOI
18 A. T. Lawal and G. G. Wallace, Vapour phase polymerisation of conducting and non-conducting polymers: A review, Talanta, 119, 133-143 (2014).   DOI
19 W. E. Tenhaeff and K. K. Gleason, Initiated chemical vapor deposition of alternating copolymers of styrene and maleic anhydride, Langmuir, 23(12), 6624-6630 (2007).   DOI
20 K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Deposition, 11, 437-443 (2005).   DOI
21 Y.-H. Han, J. T-Sejdic, B. Wright, and J.-H. Yim, Simultaneous vapor phase polymerization of PEDOT and a siloxane into organic/inorganic hybrid thin films, Macromol. Chem. Phys., 212, 521-530 (2011).   DOI
22 J.-H. Yim, Mechanically robust poly(3,4-ethylenedioxythiophene)? $SiO_2$ hybrid conductive film prepared by simultaneous vapor phase polymerization, Compos. Sci. Tech., 86, 45-51 (2013).   DOI
23 R. Khadka and J.-H. Yim, Influence of base inhibitor and surfactant on the electrical and physicochemical properties of PEDOT-$SO_2$ hybrid conductive films, Macromol. Res., 23, 559-565 (2015).   DOI
24 Y. S. Ko and J.-H. Yim, Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of $SO_2$ with vapor phase polymerization, Polymer, 93, 167-173 (2016).   DOI
25 Y. Wei, J.-M. Yeh, D. Jin, X. Jia, J. Wang, G.-W. Jang, C. Chen, and R. W. Gumbs, Composites of electronically conductive polyaniline with polyacrylate - silica hybrid sol-gel materials, Chem. Mater., 7, 969-974 (1995).   DOI
26 S. W. Kim, S. W. Lee, J. Kim, J.-H. Yim, and K. Y. Cho, Three-dimensional, high-porosity conducting skeletal structure from biodegradable microparticles with vapor-phase polymerized conformal surface layer, Polymer, 102, 127-135 (2016).   DOI
27 A. Asatekin, M. C. Barr, S. H. Baxamura, K. K. S. Lau, W. Tenhaeff, J. Xu, and K. K. Gleason, Designing polymer surfaces via vapor deposition, Mater. Today, 13, 26-33 (2010).   DOI
28 J. Ahn, J. S. Yoon, S. G. Jung, J.-H. Yim, and K. Y. Cho, A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries, J. Mater. Chem. A, 5, 21214-21222 (2017).   DOI
29 A. M. Nardes, M. Kemerink, M. M. D. Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT : PSS thin films treated with sorbitol, Org. Electron., 9, 727-734 (2008).   DOI
30 B. Somboonsub, M. A. Invernale, S. Thongyai, P. Praserthdam, D. A. Scola, and G. A. Sotzing, Preparation of the thermally stable conducting polymer PEDOT-sulfonated poly(imide), Polymer, 51, 1231-1236 (2010).   DOI
31 X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, and M. Zhou, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer, J. Mater. Chem. A, 5, 17499-17505 (2017).   DOI
32 Y. S. Ko and J.-H. Yim, Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of $SO_2$ with vapor phase polymerization, Polymer, 93, 167-173 (2016).   DOI
33 J.-Y. Kim, M.-H. Kwon, Y.-K. Min, S. Kwon, and D.-W. Ihm, Self-assembly and crystalline growthof poly(3,4-ethylenedioxythiophene) nanofilms, Adv. Mater., 19, 3501-3506 (2007).   DOI
34 A. Mohammadi, M. Hasan, B. Liedberg, I. Lundstrom, and W. Salaneck, Chemical vapour deposition (CVD) of conducting polymers: Polypyrrole, Synth. Met., 14, 189-197 (1986).   DOI
35 B. Winther-Jensen and K. West, Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers, Macromolecules, 37, 4538-4543 (2004).   DOI
36 J. S. Choi, J. S. Park, B. Kim, B.-T. Lee, and J.-H. Yim, In vitro biocompatibility of vapour phase polymerised conductive scaffolds for cell lines, Polymer, 120, 95-100 (2017).
37 J. Ahn, S. Yoon, S. G. Jung, J.-H. Yim, and K. Y. Cho, A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries, J. Mater. Chem. A, 5, 21214-21222 (2017).   DOI
38 S. K. Jung, K. Y. Cho, and J.-H. Yim, Porous PEDOT-$SO_2$ hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization, J. Ind. Eng. Chem., 63, 95-102 (2018).   DOI
39 D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique, Thin Solid Films, 517, 4156-4160 (2009).   DOI
40 K.-S. Jang, D. O. Kim, J.-H. Lee, S.-C. Hong, T.-W. Lee, Y. Lee, and J.-D. Nam, Synchronous vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) and poly(3-hexylthiophene) copolymer systems for tunable optoelectronic properties, Org. Electron., 11, 1668-1675 (2010).   DOI
41 S. Nair, E. Hsiao, and S. H. Kim, Melt-welding and improved electrical conductivity of non woven porous nanofiber mats of poly(3,4-ethylenedioxythiophene) grown on electrospun polystyrene fiber template, Chem. Mater., 21, 115-121 (2009).   DOI
42 D. Yan, X. Xu, G. Ma, and J. Sheng, Low temperature plasma-nitiated precipitation copolymerization of styrene and maleic anhydride, J. Appl. Polym. Sci., 125, 1352-1356 (2012).   DOI
43 Y. H. Ha, N. Nikolov, S. K. pollack, J. Masstrangelo, and B. D. Martin, Towards a transparent, highly conductive Poly(3,4-ethylenedioxythiophene), Adv. Funct. Mater., 14, 615-622 (2004).   DOI
44 D. M. de Leeuw, P. A. Kraakman, P. F. G. Bongaerts, C. M. J. Mutsaers, and D. B. M. Klaassen, Electroplating of conductive polymers for the metallization of insulators, Synth. Met., 66(3), 263-273 (1994).   DOI