Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2974

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications  

Jang, Kihun (Department of Organic and Nano Engineering, Hanyang University)
Lee, Sung-Won (Department of Organic and Nano Engineering, Hanyang University)
Yu, Seongil (Department of Organic and Nano Engineering, Hanyang University)
Salunkhe, Rahul R. (Institute of Nano Science and Technology, Hanyang University)
Chung, Ildoo (Department of Polymer Science and Engineering, Pusan National University)
Choi, Sungmin (Research Center of Waterproofing Technology in Institute of Construction Technology, Seoul National University of Science & Technology)
Ahn, Heejoon (Department of Organic and Nano Engineering, Hanyang University)
Publication Information
Abstract
$Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.
Keywords
Carbon nanotubes; Chemical synthesis; Composite materials; Manganese oxides; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.   DOI   ScienceOn
2 Simon, P.; Gogotsi, Y. Nature Mater. 2008, 7, 845.   DOI   ScienceOn
3 Conway, B. E. Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, USA, 1997; p 15.
4 Jayalakshmi, M.; Balasubramanian, K. Int. J. Electrochem. Sci. 2008, 3, 1196.
5 Pan, H.; Li, J.; Feng, Y. P. Nanoscale Res. Lett. 2010, 5, 654.   DOI   ScienceOn
6 Zhang, L. L.; Xhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.   DOI   ScienceOn
7 Snook, G. A.; Kao, P.; Best, A. S. J. Power Sources 2011, 196, 1.   DOI   ScienceOn
8 Hu, C. C.; Chen, W. C.; Chang, K. H. J. Electrochem. Soc. 2004, 151, A281.   DOI   ScienceOn
9 Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, 1697.   DOI   ScienceOn
10 Zhang, S. W.; Chen, G. Z. Energy Mater. 2008, 3, 186.   DOI   ScienceOn
11 Wang, D.; Yuqi, Y.; Wang, Q.; Wang, T. Eur. J. Chem. 2012, 4, 628.
12 Lee, J. W.; Hall, A. S.; Kim, J.-D.; Mallouk, T. E. Chem. Mater. 2012, 24, 1158.   DOI   ScienceOn
13 Li, D.; Meng, F.; Yan, X.; Yang, L.; Heng, H.; Zhu, Y. Nanoscale Res. Lett. 2013, 8, 535.   DOI   ScienceOn
14 Li, Z.; Lin, N.; Wang, X.; Wang, C.; Qi, Y.; Yin, L. J. Mater. Chem. 2012, 22, 16640.   DOI   ScienceOn
15 Jiang, L.; Fan, Z. Nanoscale 2012, 6, 1922.
16 Wang, T.; Peng, Z.; Wang, Y.; Tong, J.; Zheng, G. Sci. Rep. 2013, 3, 2693.
17 Dubal, D. P.; Holze, R. New J. Chem. 2013, 37, 403.   DOI   ScienceOn
18 Cui, X.; Hu, F.; Wei, W.; Chen, W. Carbon 2011, 49, 1225.   DOI
19 Salunkhe, R. R.; Jang, K.; Yu, H.; Yu, S.; Ganesh, T.; Han, S. H.; Ahn, H. J. Alloys Compd. 2011, 509, 6677.   DOI   ScienceOn
20 An, G.; Yu, P.; Xiao, M.; Liu, Z.; Miao, Z.; Ding, K.; Mao, L. Nanotechnology 2008, 19, 275709.   DOI   ScienceOn
21 Chen, C. Y.; Chien, T. C.; Lin, C. K.; Wang, S. C. Diam. Relat. Mater. 2009, 18, 482.   DOI   ScienceOn
22 Dubal, D. P.; Dhawale, D. S.; Salunkhe, R. R.; Fulari, V. J.; Lokhande, C. D. J. Alloys Compd. 2010, 497, 166.   DOI   ScienceOn
23 Salunkhe, R. R.; Jang, K.; Lee, S. W.; Ahn, H. RSC Advances 2012, 2, 3190.   DOI   ScienceOn
24 Salunkhe, R. R.; Jang, K.; Lee, S. W.; Yu, S.; Ahn, H. J. Mater. Chem. 2012, 22, 21630.   DOI   ScienceOn
25 Osorio, A. G.; Silveria, I. C. L.; Bueno, V. L.; Bergmann, C. P. Appl. Surf. Sci. 2008, 255, 2485.   DOI   ScienceOn
26 Xu, H. Y.; Xu, S. L.; Wang, H.; Yan, H. J. Electrochem. Soc. 2005, 152, C803.   DOI
27 Tianyu, W.; Zheng, P.; Yuhang, W.; Jing, T.; Gengfeng, Z. Sci. Rep. 2013, 3, 2693.
28 Xiong, Z.; Xianzhong, S.; Haitao, Z.; Dacheng, Z.; Yanwei, M. Electrochim. Acta 2013, 87, 637.   DOI   ScienceOn
29 Dubal, D. P.; Dhawale, D. S.; Salunkhe, R. R.; Pawar, S. M.; Fulari, V. J.; Lokhande, C. D. J. Alloys Compd. 2009, 484, 218.   DOI   ScienceOn
30 Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M. Adv. Funct. Mater. 2010, 20, 3595.   DOI   ScienceOn