• Title/Summary/Keyword: condition evaluation

Search Result 4,983, Processing Time 0.046 seconds

Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections (Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발)

  • Son, Jong-Chul;Rhee, Suk-Keun;An, Deok-Soon;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.115-124
    • /
    • 2006
  • The objectives of this paper are to develop the structural condition evaluation technique using Falling Weight Deflectometer deflections and propose the structural condition criteria for asphalt pavements. To figure out correlation between surface deflections and critical pavement responses, the synthetic database has been established using the finite element pavement structural analysis program. A regression approach was adopted to develop the pavement response model that can be used to compute the stresses and strains within pavement structure using the FWD deflections. Based on the pavement response model, the procedure for assessing the structural condition of pavement layers was proposed in this study. To validate the condition evaluation procedure for asphalt pavements, the FWD test, dynamic cone penetrometer test, and repeated triaxial compression test were conducted on 11 sections of national highway and 8 sections of local road. Test results indicate that the tensile strain at the bottom of AC layer and AC elastic modulus were good indicators for estimating the stiffness characteristics of AC layer. For subbase layer, the BDI value and compressive strain on top of the subbase layer were appropriate to predict the structural capacity of subbase layer. The BCI value and compressive strain on top of the subgrade were found to be good indicators for evaluating the structural condition of the subgrade. The evaluation criteria for structural condition in asphalt pavements was also proposed in this paper.

  • PDF

Propose an Improvement of Checklist for Actual Condition Survey for Designation of Class-lll Facilitie (제3종시설물 지정을 위한 실태조사 체크리스트 개선방안)

  • Yoon, Ji-Ho;Jang, Myunghoun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.100-101
    • /
    • 2021
  • Facilities with high risk of a disaster or requiring continuous safety management are designated as class-III facility. In order to designate a class-III facility, it is evaluated based on the safety status of the facility, the risk to the building users, and the number of years elapsed of the facility, etc. and this shall be referred to the actual condition survey for the designation of a class-III facility. In the actual condition survey conducted to designate the safety status is calculated by the checklist based on the evaluation scores consisting of five stages each item, and is evaluated in three stages by 'good', 'careful observation', and 'designated review' through the average of the combined scores. Currently, the actual condition survey being conducted applies only structural stability, and the risk factors such as damage to the finish, the risk of cracking, and the type and weight of major structures are not included in the checklist for the actual condition survey, so even if experts think it is dangerous, scores cannot be reflected. Therefore, this study aims to analyze the problems of checklist of the actual condition survey for the designation of class-III facility and to propose an improvement plan for the checklist for the actual condition survey.

  • PDF

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

The Study on Affecting Subject Accomplishment by Noise (소음이 과제수행에 미치는 영향에 관한 연구)

  • Kim, Sung-Cheol;Park, Keun-Sang;Kim, Kwan-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to confirm the impact of noise on subject accomplishment as well as physical/mental load, and evaluates the effects of noise-masking and earplug. 15 college students participate in the test, and the comparison is performed by executing four projects according to conditional categories of noise environments; control condition, noise condition, earplug condition, and noise-masking condition. Noise in the field site of the H manufacturer was used as the noise source, the general job aptitude test which consist of linguistic ability, math ability, perception ability, reasoning ability was used as the task of this project. To estimate physical/mental load evaluation, we used the heart rate R-R interval, Criteria flicker fusion frequency(CFF) and measured NASA-TLX workload for subjective evaluation. As the research outcome, it is shown that there is a meaningful difference for the project task score, dropping rate of CFF, the heart rate, and NASA-TLX subjective evaluation score according to conditions of noise environment. Therefore, the impact of noise on capability of subject accomplishment as well as physical/mental load was confirmed along with the effects of using earplug and noise-masking.

An Electrochemical Evaluation on the Corrosion Resistance of Heavy Anticorrosive Paint(II) (중방식 도료의 내식성에 관한 전기 화학적 평가(II))

  • Sung, Ho-Jin;Kim, Jin-Kyung;Lee, Myung-Hoon;Kim, Ki-Joon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.382-387
    • /
    • 2005
  • An electrochemical evaluation on the corrosion resistance for heavy anticorrosive paint was carried out for 5 kinds of heavy anticorrosive paints such as High solid epoxy(HE), Solvent epoxy(SE), Tar epoxy(TE), Phenol epoxy(PE), and Ceramic epoxy(CE) as parameters of DFT(Dry Film Thickness, 25${\mu}m$50${\mu}m$, solution condition(Flow of Nonflow). Corrosion current density of HE(DFT 50${\mu}m$ in case of flow condition was larger than that of nonflow condition. However, their values of the other anticorrosive paints were decreased compared to the nonflow condition. The values of AC impedance were increased with increasing of DFT regardless of kinds of anticorrosive paints. And the polarization resistance of cyclic voltammogram showed a good tendency to correspond with well the values of AC impedance measurement. HE and CE had a relatively good corrosion resistance than other heavy anticorrosive paint.

  • PDF

The Evaluation of Present Condition and Visitors Satisfaction of Rooftop Greening (옥상녹화 조성지역의 현황평가 및 이용객 만족도 연구)

  • Lee, Dong-Kun;Yoon, So-Won;Oh, Seung-Hwan;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.45-58
    • /
    • 2005
  • The objective of this study is to the integrated evaluation of the present condition and satisfaction of visitors of rooftop greening area using quantitative and qualitative method. The thirteen green roofs were selected to investigate environmental variables as like building structure, soil, water, atmosphere and climate environment and questionnaire survey for investigate the satisfaction of visitors was conducted. The results of this study are as follows : remove of the hazardous inflow of species, install rain water recycling facility, install outdoor unit of air condition where not to affect plants in green roof, install safety facilities in the case of making resting place, plant variable vegetation and so on. The result of questionnaire survey are that visitors want to make more comfortable resting space. The more bigger the resting space and privacy, the more satisfaction of visitor became high. In conclusion, green roofs implementation should be considered reduction of temperature and delay of runoff, insulation effect and ecological restoration as well as rooftop greening is focused on the development of resting space nowadays.

Condition Evaluation Method of Satellite Communication Facilities for Hydrological Observation (수문관측용 위성통신설비 상태평가 기법)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.3030-3037
    • /
    • 2013
  • Life time of facilities is different In case of operating environment and frequency of use. So, the durable year of the facilities is only considered to replace the facilities at present. Thus, system management is needed economical assesment based on condition evaluation through performance analysis of facilities. This research makes a proposal for scientific condition evaluation table through physical assessment, performance analysis assessment, durable years assessment about satellite communication facilities being used in K-water. Consequentially, reasonable replacement plan is established for satellite communication facilities.

Identification of the Most Conservative Condition for the Safety Analysis of a Nuclear Power Plant by Use of Random Sampling (무작위 추출 방법을 이용한 원자력발전소 보수적 안전해석 조건 결정)

  • Jeong, Hae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.131-137
    • /
    • 2015
  • For the evaluation of safety margin of a nuclear power plant using a conservative methodology, the influence of applied assumptions such as initial conditions and boundary conditions needs to be assessed deliberately. Usually, a combination of the most conservative initial conditions is determined, and the safety margin for the transient is evaluated through the analysis for this conservative conditions. In existing conservative methodologies, a most-conservative condition is searched through the analyses for the maximum, minimum, and nominal values of the major parameters. In the present study, we investigates a new approach which can be applied to choose a most-conservative initial condition effectively when a best-estimate computer code and a conservative evaluation methodology are utilized for the evaluation of safety margin of transients. By constituting the band of various initial conditions using the random sampling of input parameters, the sensitivity study for various parameters are performed systematically. A method of sampling the value of control or operation parameters for a certain range is adopted by use of MOSAIQUE program, which enables to minimize the efforts for achieving the steady-state for various different conditions. A representative control parameter is identified, which governs the reactor coolant flow rate, pressurizer pressure, pressurizer level, and steam generator level, respectively. It is shown that an appropriate distribution of input parameter is obtained by adjusting the range and distribution of the control parameter.

A Study on the Statistical Distribution of Ultrasonic Velocities for the Condition Evaluation of Concrete Wide Beam (콘크리트 넓은 보의 상태평가를 위한 초음파 속도의 통계학적 분포에 대한 연구)

  • Yoon, Young-Geun;Lee, In-Bok;Sa, Min-Hyung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • The ultrasonic pulse velocities of pressure, shear, and Rayleigh waves ( P-, S-, and R- waves) have been used for the condition evaluation of various concrete structures, but the statistical distribution according to the wave type has not been studied clearly in view of data reliability and validity. Therefore, this study analyzed the statistical distribution of P-, S-, R-wave velocities in concrete wide beams of $800{\times}3100mm$ (width ${\times}$ length) with a thickness of 300 mm. In addition, we investigated an experimental consistency by the Kolmogorov-Smirnov goodness-of-fit test. The experimental data showed that the R-, S- and P- wave velocities in order have better statistical stability and reliability for in situ evaluation because R- and S-waves are less sensitive to confinement and boundary conditions. Also, good correlations between wave velocities and strength and modulus of elasticity were found, which indicate them as appropriate techniques for estimating the mechanical properties.

Safety Evaluation of Non-refillable Butane Can Equipped with Relief Valve for Prevention of Explosion (안전밸브가 장착된 휴대용 부탄캔에 대한 안전성 평가 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.212-217
    • /
    • 2008
  • This study carried out the safety evaluation of non-refillable butane can for portable gas range equipped with relief valve for prevention of explosion. The can is heated by electric heater at the real using condition and the extreme condition after installing at a portable gas range for checking the operating pressure and the evaluating suitability of releasing flux. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real condition. As a result of this safety evaluation test, a non-refillable butane can with relief valve prevents the can from exploding by control of internal pressure.