• 제목/요약/키워드: condensation heat transfer

검색결과 337건 처리시간 0.028초

마이크로 휜관낸 R410A의 응축열전달 특성에 관한 실험적 연구 (Experiments on Condensation Heat Transfer Characteristics Inside a Microfin Tube with R410A)

  • 한동혁;조영진;이규정;박심수
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1470-1477
    • /
    • 2000
  • Due to the ozone depletion and global warming potentials, some refrigerants(CFx and HCFCs) have been rapidly substituted. R410A is considered as the alternative refrigerant of R22 for the air-conditioners used a home and in industry. Experiments on the condensation heat transfer characteristics inside a smooth or a micro-fin tube with R410A are performed in this study. The test tubes 7/9.52 mm in outer diameters and 3 m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. It is shown that the heat transfer is enhanced and the amount of pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficient and the pressure penalty factor, it is found that the high heat transfer enhancement coefficients are obtained in the range of small mass flux while the penalty factors are almost equal.

수평 평활관에서 관직경 및 표면 과냉도가 R1234ze(E) 및 R1233zd(E) 막응축 열전달에 미치는 영향 (Effects of Tube Diameter and Surface Sub-Cooling Temperature on R1234ze(E) and R1233zd(E) Film Condensation Heat Transfer Characteristics in Smooth Horizontal Laboratory Tubes)

  • 전동순;고지운;김선창
    • 설비공학논문집
    • /
    • 제29권5호
    • /
    • pp.231-238
    • /
    • 2017
  • HFO refrigerants have recently come to be regarded as promising alternatives to R134a for use in turbo chillers. This study provides results from experiments evaluating the film condensation heat transfer characteristics of HFO refrigerants R1234ze(E) and R1233zd(E) on smooth horizontal laboratory tubes. The experiments were conducted at a saturation vapor temperature of $38.0^{\circ}C$ with surface sub-cooling temperatures in the range of $3{\sim}15^{\circ}C$. We observe that the film condensation heat transfer coefficient decreases as surface sub-cooling temperatures increase. In the case of laboratory tubes with a diameter of 19.05 mm, the film condensation heat transfer coefficients of R1234ze(E) and R1233zd(E) were approximately 11% and 20% lower than those of R134a, respectively. Furthermore, our investigation of the effect of tube diameter on film condensation heat transfer coefficients, demonstrates an inverse relationship where the film condensation heat transfer coefficient increases as laboratory tube diameter decreases. We propose experimental correlations of Nusselt number for R1234ze(E) and R1233zd(E), which yield a ${\pm}20%$ error band.

테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상 (Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation)

  • 강민주;이종훈;차수진;신예지;김동현;김경자;이정훈
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.90-95
    • /
    • 2021
  • Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

Application of the machine learning technique for the development of a condensation heat transfer model for a passive containment cooling system

  • Lee, Dong Hyun;Yoo, Jee Min;Kim, Hui Yung;Hong, Dong Jin;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2297-2310
    • /
    • 2022
  • A condensation heat transfer model is essential to accurately predict the performance of the passive containment cooling system (PCCS) during an accident in an advanced light water reactor. However, most of existing models tend to predict condensation heat transfer very well for a specific range of thermal-hydraulic conditions. In this study, a new correlation for condensation heat transfer coefficient (HTC) is presented using machine learning technique. To secure sufficient training data, a large number of pseudo data were produced by using ten existing condensation models. Then, a neural network model was developed, consisting of a fully connected layer and a convolutional neural network (CNN) algorithm, DenseNet. Based on the hold-out cross-validation, the neural network was trained and validated against the pseudo data. Thereafter, it was evaluated using the experimental data, which were not used for training. The machine learning model predicted better results than the existing models. It was also confirmed through a parametric study that the machine learning model presents continuous and physical HTCs for various thermal-hydraulic conditions. By reflecting the effects of individual variables obtained from the parametric analysis, a new correlation was proposed. It yielded better results for almost all experimental conditions than the ten existing models.

R134A를 이용한 판형 열교환기의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics in Plate Heat Exchangers with R134A)

  • 홍순배;한동혁;이규정;박성룡;장기창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.503-508
    • /
    • 2001
  • Experiments on the condensation and evaporation heat transfer characteristics inside plate heat exchanger with R134A are performed in this study. The test plate heat exchangers in 45o, 55o and 70o shevron angle are used. Varying the mass flux of the refrigerant and the saturation temperatures, the average heat transfer coefficients are investigated. It is shown that the heat transfer is increased with increasing shevron angle. Experiments results show that average condensation heat transfer coefficients are decreased with increasing condensation temperature but those of evaporation are increased with increasing evaporation temperature.

  • PDF

편평관군 열교환기에서의 응축 열전달 및 압력강하 특성해석 (Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Flat Tube-Bundle Heat Exchanger)

  • 박병규;이준식
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1177-1184
    • /
    • 2005
  • A numerical analysis was carried out on the heat and mass transfer, and pressure drop characteristics of the modular tube bundle heat exchanger. The finite volume method with a $k-\varepsilon$ turbulence model was used for the analysis. Due to condensation, the total heat transfer rate is observed about $4\~8\%$ higher than that on dry surfaces. Total heat transfer rate increases with increase in the velocity, temperature and relative humidity of incoming air. It also increases with decreasing the aspect ratio of heat exchanger tube. The inlet velocity of cooling water has little effect on the total heat transfer when the other conditions are fixed.

이차피동냉각시스템의 열교환기 설계를 위한 응축열전달 상관식 연구 (Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System)

  • 주윤재;강한옥;이태호;박천태;이희준
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1069-1078
    • /
    • 2013
  • 최근 원자로 시스템에서 응축열교환기를 이용한 피동안전냉각 개념이 활발히 연구되고 있다. 이차피동냉각시스템의 수직형 응축열교환기 설계를 위하여, 열적 크기 산정 프로그램(TSCON)을 구현하고 검증하였다. TSCON 검증을 위해 이차피동냉각시스템 응축열교환기 실험에서 수집된 1,157 개의 순수증기 응축열전달 실험데이터를 현존하는 응축열전달 상관식들을 이용하여 비교 검증하였다. 그 결과 2009년 Shah 에 의해 출판된 응축열전달 상관식이 수집된 실험데이터를 34.8% 오차로 예측하는 것으로 계산되었으며, TSCON 의 응축열전달 상관식으로서 적합한 것으로 나타났다.

Dropwise condensation induced on chromium ion implanted aluminum surface

  • Kim, Kiwook;Lee, Youngjin;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.84-94
    • /
    • 2019
  • Aluminum substrates are irradiated with chromium ions and the steam condensation heat transfer performance on these surfaces is examined. Filmwise condensation is induced on the surface of aluminum specimens irradiated with chromium ion dose of less than $10^{16}ions/cm^2$ while dropwise condensation occurs on the specimens irradiated with chromium ion dose of $5{\times}10^{16}ions/cm^2$ in the range of ion energy from 70 to 100 keV. The heat transfer coefficient of the surfaces on which dropwise condensation occurs appeared to be approximately twice as much as the prediction by Nusselt's film theory. In a durability test, dropwise condensation lasts over six months and the heat transfer coefficient is also maintained.

응축용 특수 전열관의 열전달 특성에 관한 연구 (Experimental Study on Condensation Heat Transfer Characteristics of Special Heat Transfer Tubes)

  • 한규일;박종운;권영철;조동현
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.827-835
    • /
    • 2001
  • In this study, condensation heat transfer characteristics were conducted with special heat transfer tubes of SH-C type. Experiments were carried out the saturated vapor temperature of 334K and the wall subcooling of 1.5-4.5K. The refrigerant was R-113 and the enhanced tubes used in the present study were SH-CDR, SH-CYR and SH-CHR. The experimental results showed that the condensation heat transfer coefficients of SH-C type tubes were about 23-66% higher than those of a low integral-fin tube. It was visualized that the condensed liquid on the outer surface of SH-C type tubes flowed continuously down unlike a low integral-fin tube and a plain tube, due to a 3-D extending fin on the outer surface of SH-C type tubes. As a result, the thermal resistance of the condensed liquid decreased and the heat transfer coefficient increased. Also, the enhancement ratio of SH-CDR tube was the highest, and it was about 9-11 times as compared to that of a plain tube.

  • PDF

Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구 (Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger)

  • 김성우;백창현;송강섭;김용찬
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.