DOI QR코드

DOI QR Code

Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

이차피동냉각시스템의 열교환기 설계를 위한 응축열전달 상관식 연구

  • Ju, Yun Jae (School of Mechanical Systems Engineering, Kookmin Univ.) ;
  • Kang, Han-Ok (Advanced Reactor Development Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Tae-Ho (Advanced Reactor Development Institute, Korea Atomic Energy Research Institute) ;
  • Park, Cheon-Tae (Advanced Reactor Development Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Hee Joon (School of Mechanical Systems Engineering, Kookmin Univ.)
  • 주윤재 (국민대학교 기계시스템공학부) ;
  • 강한옥 (한국원자력연구원 신형원자로개발연구소) ;
  • 이태호 (한국원자력연구원 신형원자로개발연구소) ;
  • 박천태 (한국원자력연구원 신형원자로개발연구소) ;
  • 이희준 (국민대학교 기계시스템공학부)
  • Received : 2013.02.14
  • Accepted : 2013.09.28
  • Published : 2013.12.01

Abstract

Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

최근 원자로 시스템에서 응축열교환기를 이용한 피동안전냉각 개념이 활발히 연구되고 있다. 이차피동냉각시스템의 수직형 응축열교환기 설계를 위하여, 열적 크기 산정 프로그램(TSCON)을 구현하고 검증하였다. TSCON 검증을 위해 이차피동냉각시스템 응축열교환기 실험에서 수집된 1,157 개의 순수증기 응축열전달 실험데이터를 현존하는 응축열전달 상관식들을 이용하여 비교 검증하였다. 그 결과 2009년 Shah 에 의해 출판된 응축열전달 상관식이 수집된 실험데이터를 34.8% 오차로 예측하는 것으로 계산되었으며, TSCON 의 응축열전달 상관식으로서 적합한 것으로 나타났다.

Keywords

References

  1. Kang, Y. M. and Park, G. C., 2001, "An Experimental Study on Evaporative Heat Transfer Coefficient and Applications for Passive Cooling of AP600 Steel Containment," Nucl. Eng. Des., Vol. 204, No. 1-3, pp. 347-359. https://doi.org/10.1016/S0029-5493(00)00365-4
  2. Carelli, M. D., Conway, L. E., Oriani, L., Petrovic, B., Lombardi, C. V., Ricotti, M. E., Barroso, A. C. O., Collado, J. M., Cinotti, L., Todreas, N. E., Grgic, D., Moraes, M. M., Boroughs, R. D., Ninokata, H., Ingersoll, D. T. and Oriolo, F., 2004, "The Design and Safety Features of the IRIS Reactor," Nucl. Eng. Des., Vol. 230, No. 1-3, pp. 151-167. https://doi.org/10.1016/j.nucengdes.2003.11.022
  3. Chung, Y. -J., Kim, H. -C., Chung, B. -D, Chung, M. -K. and Zee, S. -Q., 2006, "Two Phase Natural Circulation and the Heat Transfer in the Passive Residual Heat Removal System of an Integral Type Reactor," Ann. Nucl. Energy, Vol. 33, No. 3, pp. 262-270. https://doi.org/10.1016/j.anucene.2005.09.009
  4. Park, H. -S., Choi, K. -Y., Cho, S., Yi, S. -J., Park, C. -K and Chung, M. -K, 2008, "Experimental Study on the Natural Circulation of a Passive Residual Heat Removal System for an Integral Reactor Following a Safety Related Event," Ann. Nucl. Energy, Vol 35, No. 12, pp. 2249-2258. https://doi.org/10.1016/j.anucene.2008.09.006
  5. Zhou, W., Henderson, G. and Revankar, S. T., 2010, "Condensation in a Vertical Tube Bundle Passive Condenser - Part 1: Through Flow Condensation," Int. J. Heat Mass Tran., Vol. 53, No. 5-6, pp. 1146-1155. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.039
  6. Kim, S. J., 2000, Turbulent Film Condensation of High Pressure Steam in a Vertical Tube of Passive Secondary Condensation System, Ph.D. Dissertation, KAIST.
  7. Henderson, G., Zhou, W. and Revankar, S. T., 2010, "Condensation in a Vertical Tube Bundle Passive Condenser - Part 2: Complete Condensation," Int. J. Heat Mass Tran., Vol. 53, No. 5-6, pp. 1156-1163. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.040
  8. Shah, M. M., 1979, "A General Correlation for Heat Transfer During Film Condensation Inside Pipe," Int. J. Heat Mass Tran., Vol. 22, No. 4, pp. 547-556. https://doi.org/10.1016/0017-9310(79)90058-9
  9. Uchida, H., Oyama A. and Togo Y., 1964, "Evaluation of Post-Incident Cooling Systems of Light-Water Power Reactors," Proc. 3rd Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, Vol. 13, pp. 93-104.
  10. Peterson, P. F., 1996, "Theoretical Basis for the Uchida Correlation for Condensation in Reactor Containments," Nucl. Eng. Des., Vol. 162, No. 2-3, pp. 301-306. https://doi.org/10.1016/0029-5493(95)01125-0
  11. Cho, S. J., Kim, B. S., Kang, M. G., Kim, H. G., 2000, "The Development of Passive Design Features for the Korean Next Generation Reactor," Nucl. Eng. Des., Vol. 201, No. 2-3, pp. 259-271. https://doi.org/10.1016/S0029-5493(00)00257-0
  12. Kirkbride, C. G., 1934, "Heat Transfer by Condensing Vapor on Vertical Tubes," Ind. Eng. Chem., Vol. 26, No. 4, pp. 425-428. https://doi.org/10.1021/ie50292a014
  13. Colburn, A. P., 1934, "Calculation of Condensation with a Portion of Condensate Layer is Turbulent Motion," Ind. Eng. Chem., Vol. 26, No. 4, pp. 432-434. https://doi.org/10.1021/ie50292a016
  14. Akers, W. W., Deans, H. A. and Crosser, O. K., 1959, "Condensation Heat Transfer Within Horizontal Tubes," Chem. Eng. Prog. Symp. Ser., Vol. 55, No. 29, pp. 171-176.
  15. Soliman, M., Schuster, J. R. and Berenson, P. J., 1968, "A General Heat Transfer Correlation for Annular Flow Condensation," J. Heat Trans. - T. ASME, Vol. 90, No. 2, pp. 267-276. https://doi.org/10.1115/1.3597497
  16. Blangetti, F., Krebs, R. and Schlunder, E., 1982, "Condensation in Vertical Tubes - Experimental Results and Modeling," Chem. Eng. Fund., Vol. 1, pp. 20-63.
  17. Traviss, D. P., Rhosenow, W. M. and Baron, A. B., 1973, "Forced-convection Condensation Inside Tubes: A Heat Transfer Equation for Condenser Design," ASHRAE Trans., Vol. 79, No. 1, pp. 157-165.
  18. Shah, M. M., 2009, "An Improved and Extended General Correlation for Heat Transfer During Condensation in Plain Tubes," HVAC&R Research, Vol. 15, No. 5, pp. 889-913. https://doi.org/10.1080/10789669.2009.10390871
  19. Khun, S. Z., 1995, Investigation of Heat Transfer from Condensation Steam-gas Mixtures and Turbulent Film Flowing Downward inside a Vertical Tube, Ph.D. Dissertation, University of California, Berkeley.
  20. Lee, K. -Y., 2008, The Effects of Noncondensable Gas on Steam Condensation in a Vertical Tube of Passive Residual Heat Removal System, Ph.D. Dissertation, Pohang University of Science and Technology.
  21. Rohsenow, W. M., Webber, J. H. and Ling, T., 1956, "Effect of Vapor Velocity on Laminar and Turbulent Film Condensation," J. Heat Trans. - T. ASME, Vol. 78, pp. 1637-1643.
  22. Derby, M., Lee, H. J., Peles, Y. and Jensen, M. K., 2012, "Condensation Heat Transfer in Square, Triangular, and Semi-Circular Mini-Channels," Int. J. Heat Mass Tran., Vol. 55, No. 1-3, pp. 187-197. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.002