• Title/Summary/Keyword: concrete quality

Search Result 2,020, Processing Time 0.028 seconds

Characterization of Textures for Low Noise Concrete Pavement

  • Moon, Han-Young;Ha, Sang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.461-464
    • /
    • 2003
  • Portland Cement Concrete (PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. As the results of research, surfaces of exposed aggregate, tining and grooving concrete pavements appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, several methods of texturing were considered to reduce tire/pavement noise. As the results of this paper, PCC pavements with special texturing have superior surface friction as well as noise reductions when compared to conventional PCC pavement. Especially, Exposed Aggregate Concrete (EAC) surface appears to provide better noise quality characteristics. Conclusively, if overall noise and safety are considered simultaneously, EAC pavement that provides satisfactory friction as well as better noise reductions is suggested.

  • PDF

The Practical Application on the Super Flowing Concrete using Manufactured Sand (부순모래를 사용한 초유동 콘크리트의 현장적용)

  • Park, Chil-Lim;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.9-14
    • /
    • 1998
  • In this paper, we described the basic elements(flowabiligy, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete(SFC) in Top Down site. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments(mix design, optimum mix condition) before placing the concrete in site. As a result of this project, the developed SFC shown high flowability and self-fillingability in the joint good enough for the requirement. Futhermore, inner uniformity of the no-vibrated concrete was verified by testing reformed space. Therefore, quality control and compressive strength(360kg/$\textrm{cm}^2$) can be secured by using SFC even without vibrating.

  • PDF

Earlier Prediction of Concrete Strength by The Warm Water Method (온수양생법에 의한 콘크리트 강도의 조기판정에 관한 연구)

  • 김수만;유종희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.119-123
    • /
    • 1995
  • This paper presents an accelerated-curing method by the war water method and discusses how these methods can be adapted for regular quality control and quality assurance of concret. Accelerated strength test data can be used for estimating the furture stength, e.g. the 28-day strength. An accelerated-curing method to predict the 28-day strength of concrete from 1-day warm water-cured test results was evaluated in the laboratory and the field. For these evaluations test are performed for 1845 standard specimens from 123 different batches of concrete. The results of this study the equation applicable universally with resonable accuracy are presented for estimating the potential strength of concrete by the warm water-curing method.

  • PDF

Basic Study on Quality Assurance of Concrete Structure by using Odor Sensor (후각센서 사용에 의한 콘크리트 구조물의 품질평가에 관한 기초적 연구)

  • Shirokado, Yoshitsugu;Kagaya, Makoto;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.42-42
    • /
    • 2010
  • In order to assure the quality of concrete structure in construction process, the odor strength measured by using odor sensor was used to evaluate curing effect. Then, the compressive strength and odor strength in ordinary concrete N were shown in water curing(=standard curing), indoor and outdoor atmospheric curing condition. The difference between odor strength in the standard curing and that in each curing condition was defined as the difference in the odor strength. And the difference in odor strength in slag powder concrete BP cured in water curing(=standard curing) for different period before exposing in outdoor atmosphere in winter season were evaluated at the age of 14 days. A necessity to prolong the moisture curing for the slag powder concrete BP compared with the ordinary concrete N to obtain a required curing effect was shown by measuring the odor strength and long term compressive strength.

  • PDF

A Study on the Improvement of an Early-age Quality of Blast-Furnace Slag Concrete (고로슬래그 콘크리트의 초기 품질 하락 극복을 위한 연구)

  • 반성수;최봉주;유득현;전영환;조현태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1215-1220
    • /
    • 2000
  • Blast-Furnace Slag, a by-product of the iron or steel industry, has potential sa a cementitious material. The addition of a Blast-Furnace Slag generally reduces the heat of hydration and can confer significant improvements in resistance to sulfate attack and alkali-aggregate reaction, as well as increases in ultimate strength. But it also reduces early-age strength. In this study, for the purpose of improvement of early-age quality of Blast-Furnace Slag concrete, we choose blaine fineness of $6, 000~8, 000cm^2/g$ of Blast-Furnace Slag, and investigate the various properties of concrete. As a result, workability and early-age strength of Blast-Furnace Slag concrete were improved according to the increase of blaine fineness of Blast-Furnace Slag.

Using the maturity method in quality control of cold weather concrete (적산온도에 의한 동절기 콘크리트의 품질관리)

  • Lee, Joon-Gu;Park, Kwang-Su;Cho, Young-Kweon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The prediction of the strength of cold weather concrete and the analysis of the insulating material effect were performed to apply the prediction function with maturity concept for quality control of them in this study. The several results driven from above processes were summarized as followings. First, the difference between the temperature of cylinder covered with insulating materials and that of cylinder without them was $4.5\~6.0^{\circ}C$. Second, the maturity of concrete was suggested to be keep higher than $96\~115^{\circ}C{\cdot}D$ until at least 7-day and the temperature of fresh concrete was suggested to be keep above $10^{\circ}C$ directly after set.

  • PDF

A Study on Ultra High Strength Concrete with the Domestic Materials (순수 국내재료를 사용한 초고강도 콘크리트에 관한 연구)

  • Kwon, In-Pyo;Kim, Yong-Ro;Wee, Dong-Su;Park, Chan-Hoon;Joo, Dong-Chul;Kim, Jung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.433-436
    • /
    • 2006
  • The trends of research for concrete in recent days are the high performance, high flow, ultra high strength and high durability. These are being researched with a construction company and a materials company. Anyone have to use the good quality sand, gravel, high quality chemical compound and silica fume for ultra high strength concrete as yet. This paper was researched with the domestic materials, not use the high price silica fume for the development 100MPa ultra high strength concrete with laboratory tests and mock-up test.

  • PDF

A Study on Using Possibility of Talc Powder as Concrete Admixture (활석 미분말의 콘크리트용 혼화재료로써 활용가능성에 관한 연구)

  • Woo, Jong-Kwon;Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.93-98
    • /
    • 2006
  • Admixture materials are used in mixing concrete or mortar to improve quality and performance of the concrete. This study examines the potential use of talc as a substitute for cement, the benefits of recycling waste resources for economical efficiency and quality improvement of concrete. The test was carried out by replacing the plain mix with fine grains of talc at the rate of 10%, 20%, and 30%. Talc was divided into three groups depending on the degree of pulverizing. For wet concrete, porosity, slump, bleeding per unit, and setting time by penetration resistance were measured; similarly, for dry concrete, strength and watertight Property were tested. Test results showed that the amount of bleeding and setting time could be shortened, but the strength and watertight proofing severely deteriorated. However, at the replacement rate of 10%, talc showed equal performance with the plain at all degrees of pulverization, which suggests its potential use as admixture material.

Evaluation of the concrete using low quality recycled aggregate (저품질 순환골재를 활용한 콘크리트 성능 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.7-15
    • /
    • 2017
  • The purpose of this study was to evaluate the properties of recycled aggregate concrete (RAC) using low quality recycled aggregate with or without washing before usage. The recycled aggregate concrete evaluated in this study contained various amounts of low quality recycled aggregate, viz. 30%, 60% and 100%. To evaluate the performance of the recycled aggregate concrete, various test methods were employed to assess its compressive strength, absorption, surface resistance, ultrasound velocity, chloride ion resistance, etc. The properties of the RAC with 30% and 60% washed recycled aggregate were similar those of the natural aggregate. However, the properties of the RAC with 100% washed recycled aggregate were slightly lower than those of the other versions. Also, the RAC with the non-washed recycled aggregate exhibited lower performance results. The results showed that the RAC with washed recycled aggregate had similar properties to normal concrete (concrete using natural aggregate). This implies that the recycled aggregate should be washed to improve the RCA.

Properties of Antiwashout Underwater Concrete Using the GGBF Slag (고로슬래그미분말을 활용한 수중불분리성콘크리트)

  • 문한영;김성수;이병덕;이재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.83-86
    • /
    • 1998
  • Recently, underwater concrete constructions are increasing. Therefore it is considered important to control the quality of underwater concrete. In this paper, we have an intention of evaluating fundamental properties of underwater concrete using the Ground Granulated Blast Furnace Slag (GGBF Slag). Thus, it has been investigated that the slump flow of the concrete, pH value and suspended solids in solution, compressive strength on both of specimens made above and below water. Also the percentage of GGBF Slag was found to alter the filling-up in underwater concrete.

  • PDF