• Title/Summary/Keyword: concrete pile

Search Result 385, Processing Time 0.022 seconds

Estimation of the lateral behavior of steel-concrete composite piles using subgrade-reaction spring system (지반 반력 스프링 시스템을 이용한 강관 합성 말뚝의 수평 지지 특성 평가)

  • Kwon, Hyung-Min;Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.388-395
    • /
    • 2009
  • Steel casing used to keep a borehole wall in the construction of drilled shaft increases the vertical and lateral stiffness and strength of pile, but it is usually pulled out or ignored due to the absence of standard or the problem of erosion of steel casing. In order to make use of steel casing as a permanent structure, this study carried out an experimental work for the steel-concrete composite pile. Four types of piles were used to estimate the lateral behavior of piles, which are reinforced concrete pile, steel pile and steel-concrete composite pile with and without reinforcing bar. The subgrade-reaction spring system was developed to simulate the lateral stiffness of soil in laboratory. Also, the composite loading system which can apply the axial and lateral load simultaneously was employed.

  • PDF

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Structural Modeling Experiments and Field Adaption Evaluation of Steel Cap for Performance Development of PHC Pile (PHC Pile 두부 성능개선을 위한 파일캡의 구조모델시험 및 현장 적용성 평가)

  • Kwon, Hyuk-Joon;An, Seon-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.630-633
    • /
    • 2006
  • In this study, we concerned the steel cap and head part arrangement of PHC pile structure to complement existing construction process which have the defects such as highly hazardous circumstance for safety concerns and retard a term of works. The steel cap developed for supplement the stiffness between extend foundation and contact section of PHC pile that is based on structural theory. The experiments have been performed to evaluate the characteristics of behavior between head part of PHC pile using steel cap and extend foundation.

  • PDF

Experimental Study of Concrete Filled GFRP Composite Pile (콘크리트 합성 유리섬유 강화 복합소재 파일의 실험적 거동분석)

  • 이성우;최석환;김병석;조남훈;홍종삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.111-118
    • /
    • 2003
  • Structural characteristics of concrete filled glass fiber reinforced composite pile was studied. Confinement model of composite pile was derived from experimental data, and numerical method to find P-M diagram of composite pile was developed. The flexure-compression test results were compared with analytical P-M diagram and it is demonstrated that they agree well each other. Utilizing these results, pilot composite pile was designed fabricated, and flexural test were conducted,

  • PDF

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

Determination of Construction Method for Noise & Vibration-Free Screw Concrete Piles (무소음.무진동 스크류콘크리트말뚝의 시공법 설정)

  • Choi, Yong-Kyu;Kim, Dong-Chul;Kim, Sung-Su;Nam, Moom-S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.360-368
    • /
    • 2010
  • Noise and vibration triggered by pile driving in a construction site not only give hard time to the surrounding areas but could also cause residents nearby to file civil complaints to the extent of bringing construction to a halt. To deal with this issue, construction engineers have worked strenuously to develop low noise & low vibration pile methods. A noise & vibration-free screw concrete pile method proposed in this study is one of the successful outputs. It penetrates pile underground by rotating and pressing in body of the pile to avert noise and vibration while maximizing bearing capacity. A prototype of noise and vibration-free precast screw pile method was manufactured, which is not seen anywhere in Korea and elsewhere, and have undergone pilot tests twice to determine construction method.

  • PDF

Cyclic behavior of connection between footing and concrete-infilled composite PHC pile

  • Bang, Jin-Wook;Hyun, Jung Hwan;Lee, Bang Yeon;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.741-754
    • /
    • 2014
  • The conventional PHC pile-footing connection is the weak part because the surface area and stiffness are sharply changed. The Composite PHC pile reinforced with the transverse shear reinforcing bars and infilled-concrete, hereafter ICP pile, has been developed for improving the flexural and shear performance. This paper investigates the cyclic behavior and performance of the ICP pile-footing connection. To investigate the behavior of the connection, one PHC and two ICP specimens were manufactured and then a series of cyclic loading tests were performed. From the test results, it was found that the ICP pile-footing connection exhibited higher cyclic behavior and connection performance compared to the conventional PHC pile-footing connection in terms of ductility ratio, stiffness degradation and energy dissipation capacity.

Flexural Strength of PHC Pile Reinforced with Infilled Concrete, Transverse and Longitudinal Reinforcements (내부충전 콘크리트와 횡보강 및 축방향 철근으로 보강된 PHC 말뚝의 휨강도)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Lee, Bang-Yeon;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The pre-tensioned spun high strength concrete (PHC) pile has poor load carrying capacity in shear and flexure, while showing excellent axial load bearing capacity. The purpose of this study is to evaluate the flexural performance of the concrete-infilled composite PHC (ICP) pile which is the PHC pile reinforced with infilled concrete, transverse and longitudinal reinforcement for the improvement of shear and flexural load carrying capacity. The ICP pile specimen was designed to make allowable axial compression and bending moment higher load bearing capacity than those determined through the investigation of abutment design cases. The allowable axial compression and bending moment of the ICP pile was obtained using the program developed for calculating the axial compression - bending moment interaction. Then, ICP pile specimens were manufactured and flexural tests were performed. From the test results, it was found that the maximum bending moment of the ICP pile was approximately 45% higher than that of the PHC pile and the safety factor of ICP pile design was about 4.5 when the allowable bending moment was determined to be 25% of the flexural strength.

An Experimental Study on Lateral Load Resistance of a Wall Structure Composed of Precast Concrete and H-Pile (H 파일과 프리캐스트 콘크리트로 형성된 벽체의 횡저항성능에 대한 실험적 연구)

  • Seo, Dong-Joo;Kang, Duk-Man;Lee, Hyun-Gee;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.9-17
    • /
    • 2020
  • The purpose of this study was to evaluate lateral load resistance of a wall structure composed of precast concrete wall and H-Pile. This type of structure can be used for noise barrier foundation or retaining wall. Mock-up specimens having actual size were designed and fabricated. The lateral design load is 54.6kN. The H-pile length for the test specimen is 1.5m for simulating behavior of actual wall structure has 6.5m H-pile in the field, which is determined from theoretical study. Lateral displacements and strains of wall and H-pile were monitored and cracking in precast concrete wall inspected during the test. Load and deformation capacity of test specimens was compared with design capacity. The comparisons demonstrated that this type of structures, precast concrete wall and H-pile, can resist enough to lateral design load.

Flexural Capacity of RC Composited H-Pile (철근콘크리트 합성 H-Pile의 휨성능)

  • Kim, Min-June;Shin, Geun-Ock;Jeong, Je-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.563-570
    • /
    • 2016
  • The composited structural member in which two or more materials having different stress-strain relationships (steel & concrete) has increased greatly in recent years. This paper presents the experimental results of flexural capacity of the composited H-Pile subjected to bending moment. Eight composited beams were tested under direct loading condition using the frame tester. Based on the experimental results it is noted that flexural capacity of composited H-Pile increased about 20~30% and ductility ratio significantly increased. Limit state analysis of the specimens was conducted and the result shows that flexural strength by limit state analysis is conservative.