• Title/Summary/Keyword: concrete mortar

Search Result 1,658, Processing Time 0.024 seconds

The physical properties evaluation and analysis about color revelation of the black-color mortar which applies the Granulated Blast Furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 활용(活用)한 블랙-컬러모르타르 특성(特性) 및 색상발현(色相發現)에 관한 연구(硏究))

  • Kim, Seol-Hwa;Jang, Hong-Seok;So, Seung-Young
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.86-92
    • /
    • 2010
  • In the many kind of construct-material, the concrete which has the high-strength and a durability is sufficient to use with structure-material. but the color of concrete is very monotony, so generally concrete isn't used the out surface. although color concrete is a method of expressing surface, the combination of pigment and cement cause many physical problem such as efflorescence phenomenon, strength degradation and so on. In this study, It attempt to develop the black mortar using the industrial granulated blast furnace slag and to evaluate basic physical properties compare with general color concrete to solve the color concrete problem. The result of experiment showed that the flow dropped mixing of pigment. but flow increased in proportion to the mixing rate in occasion of mortar that mix granulated blast furnace sla and black mortar which was made granulated blast furnace slag has more visible black color than any mortar.

Properties of the Strength of the Cement Mortar Depending on the KS and ISO (KS 규격과 ISO 규격에 따른 시멘트 모르터의 강도특성)

  • 김선미;최정호;서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.239-244
    • /
    • 2001
  • Opens the construction market recently, the construction industry of Korea has faced up to the barrier of globalism, and has been enforced to follow the various global standards in many aspects. Accordingly, it is expected that the test method related to the cement and concrete will be changed to conform to the international standards in Korea. Therefore, in this study, the strength tests are executed for the cement mortars, made by KS and ISO standards respectively, and then obtains such results. 1) The flow of the cement mortar according to ISO is about 8% higher ,than that of KS. 2) The flexural strength of the cement mortar according to ISO is about 10~20% higher than that of KS, and the compressive strength is about 30% higher. 3) The compressive strength relation between the cement mortars of KS and ISO may be expressed in the first-order recurrence formula as follows: Y = 1.33X - 8 In which X is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to KS and Y is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to ISO.

  • PDF

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

The Basic Study on the Site Application of the Underwater-Hardening Epoxy Mortar Using RCSS (급냉 제강 슬래그를 이용한 에폭시 수지 모르타르 현장 적용에 관한 기초적 연구)

  • Kawg Eun-Gu;Kang Gee-Woong;Bae Dae-Kyung;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.405-408
    • /
    • 2005
  • The repair and reinforcement materials of the concrete structure in underwater is use to epoxy mortar for underwater-harding. Because it ensures the separation of material and a fluidity in construction, it is important to epoxy mortar This study dealt with the influence of the using of rapidly-chilled steel slag on flow, nozzle passing time, viscosity, and strength of mortar by experimental design. As results of study, this paper proved that the more the using rate of rapidly chilled steel slag increased, the more this affected the enhancement of flow, the decrease of O-lot, and the development of compressive strength, flexural strength. Also, considering the fluidity, nozzle passing time and strength of mortar, it is desirable to use RCSS300 of rapidly chilled slag.

  • PDF

A Study on the Properties of Mortar with Recycled Fine Aggregate (순환잔골재를 사용한 모르타르의 제물성에 관한 실험적 연구)

  • Moon, Dae-Joong;Choi, Jae Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • The properties of recycled fine aggregates which had different source concrete were examined by mortar test. With higher strength of source concrete, specific gravity of recycled fine aggregate was higher and absorption of recycled fine aggregate was lower due to reduction of the volume of adhered cement paste. The compressive strength and flexible strength of mortar with recycled fine aggregate were affected by the interface boundary of new mortar and the strength of adhered mortar. Strength development of mortar with recycled fine aggregate reduced because recycled fine aggregate become a porous material with the smaller strength of source concrete. The drying shrinkage of mortar was about$800{\sim}2000{\mu}m/m$. It was about 1.5 times than that of mortar with natural fine aggregate. Relative dynamic modulus of elasticity was a similar level with that of mortar with natural fine aggregate.

  • PDF

Preperties of Mortar Using Ceramic Wastes (도자기 폐기물을 사용한 시멘트 모르터의 특성)

  • 김기형;최재진;최연왕;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-106
    • /
    • 1999
  • In this study, the properties of mortar using ceramic wastes as admixtures and fine aggregates are considered experimentally. The main chemical of ceramic wastes is SiO2 and micro structure of ceramic wastes is porous. Absorption of ceramic wastes is higher than that of river sand and specific gravity is lower than that of river sand. Flow value of mortar using ceramic waste admixture and fine aggregates is increased more or less and the strength of mortar using ceramic wastes as fine aggregates is increased.

  • PDF

An Experimental Study on the Flow Characteristics of Mortar using the Blast-Furnace Slag Sand (서냉슬래그 모르터의 FLOW특성에 관한 연구)

  • 임남기;이종균;김성식;김종락;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.54-59
    • /
    • 1998
  • This experimental Study presents the flow properties of mortar Using the Blast-furnace Slag Sand. It gives following result. The substitution rate is inversely proportional to flow. But W/C ratio is directly proportional to flow. Consequently Flow characteristics of the Blast-furnace mortar is simillar to the river sand mortar.

  • PDF

Fundamental Study of Drying Shrinkage of Hardened Cement (시멘트 경화체의 건조수축에 관한 기초적 연구)

  • 이영진;김남호;정재동;이한봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.131-134
    • /
    • 1990
  • Many papers have been published on drying shrinkage of hardened cement paste and cement mortar. The causes of drying shrinkage in cement mortar may be attributed to its mechanical properties, temperature, curing time and the evaporation of water from cement mortar. This paper deals only with drying shrinkage in cement mortar. In particular, the relationships between water evaporation and drying shrinkage are discussed.

  • PDF

An Experimental Study on the Reuse of Recycling Water of Reacy Mixed Concrete such as Concrete Water (I) -A Case Study on the Mortar- (레미콘 회수수의 콘크리트 용수로써의 재활용에 관한 실험적 연구 (I) -모르터 적용실험을 중심으로-)

  • 김기철;윤기원;류현기;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.191-196
    • /
    • 1994
  • This study is designed for analyzing the mechanical properties of cement mortar with kind of water, sludge content for the water, mixing proportion and open time of recycling water. And this study is aimed for presenting the reference data in practical use. For the results of this study, the flow properties of fresh mortar and the strength of compresive of hardened mortar is increased until the sludge content 4.5~6.0, but is decreased after the sludge content of that.

  • PDF

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.