• 제목/요약/키워드: concrete mix

검색결과 1,199건 처리시간 0.031초

콘크리트의 파괴에너지와 다른 재료특성을 이용한 배합설계법에 관한 실험연구 (Experimental Study on the Mix Design Method using the Fracture Energy and the other Parameters in Concrete.)

  • 강성후
    • 콘크리트학회지
    • /
    • 제4권4호
    • /
    • pp.149-160
    • /
    • 1992
  • 콘크리트 압축강도가 설계의 규준이 될 경우 배합비를 결정하는 방법은 여러 가지가 있으나, 파괴에너지 및 탄성계수와 같은 규준이 주어질 경우 배합비 결정에 적용하는 방법은 거의 없다. 이를 위하여 본 연구는 콘크리트 재료성질의 관계에 관한 배합설계도(Mix design diagram)를 제안하였다. 이 방법은 시멘트량, 물-시멘트 비가 콘크리트의 압축강도, 탄성계수, 할렬인장강도, 파괴에너지 그리고 콘크리트 특성길이(Characteristic length)에 주는 영향을 실험에 의하여 규명하였다. 시편제작을 위하여 각기 다른 물-시멘트비와 워커빌리티를 갖는 6종류의 무근콘크리트 배합이 사용되었다.

데이터베이스의 영역 특성을 고려한 콘크리트 최적 배합 선정 기법 (Optimum Technique for Concrete Mix-proportion Considering the Region Characteristics of Database)

  • 이방연;김재홍;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.621-624
    • /
    • 2006
  • This paper presents a novel optimum technique for optimum mix-proportion using database-based prediction model of material properties for an object function or a constraint condition. The proposed technique provides high reliability of results introducing effective region model, which assesses whether the prediction model is effective or not, in optimization process. In order to validate the proposed technique, a genetic algorithm was adopted as a optimum technique, and an artificial neural network was adopted as a prediction model for material properties and as a model for assessing effective region. The mix-proportion obtained from the proposed technique is more reasonable than that obtained from a general optimum technique.

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

굵은 골재 최대치수 변경에 따른 슬럼프 플로 타입 콘크리트의 배합조정방법별 유동특성변화에 대한 실험적 연구 (An Experimental Research on Changes of Properties in Flow by Slump Flow Type Concrete Mix Design Adjustment of the Way according to the Various Gmax Size)

  • 권해원;서일;이진우;박희곤;이재삼;이종서
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 2부
    • /
    • pp.67-68
    • /
    • 2010
  • Recently, there were not enough studies regarding the mix adjustment and changes of normal physical properties of slump flow type concrete in domestically. Therefore in this paper, it is aimed securing the fundamental data about flow its mix design method by experimental research. The experiment includes the adjustment of the way for slump flow type concrete by the variation of size of coarse aggregate. In the result, it is advisable raising the ratio of fine aggregate and unit water amount by considering the specific surface when increasing the Gmax size.

  • PDF

프리믹스 결합재를 활용한 초고성능콘크리트의 현장적용 (Application of Ultra High Performance Concrete with Pre-mix Binder)

  • 구경모;김기훈;황인성;김원기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.172-173
    • /
    • 2019
  • In this study, application of ultra high performance concrete(UHPC) with pre-mix binder were presented on civil, architectural and special field. The UHPC can be applied to a variety of site due to its excellent flowability, mechanical properties, impact resistance and fire resistance. It is necessary to apply the pre-mix binder to take into account the productivity and performance improvements of the UHPC.

  • PDF

노출콘크리트 시공단계 품질관리 기준에 관한 실험연구 (An Experimental Study on Quality Control Standards of Exposed Concrete in Construction Stage)

  • 정재수;이찬식
    • 한국건설관리학회논문집
    • /
    • 제13권2호
    • /
    • pp.48-57
    • /
    • 2012
  • 콘크리트는 구조용 재료의 하나로 인식되어 많은 연구개발 및 적용이 검토되어 왔지만, 의장적 기능을 가지는 마감재로서의 콘크리트 관리방안에 대한 연구는 부족했다. 노출콘크리트는 일반 콘크리트에 비해 더욱 많은 공사비와 체계적인 품질관리가 요구됨에도 불구하고 품질관리 방안이 구체적으로 확립되어 있지 않다. 이에 본 연구에서는 노출콘크리트 노출면의 품질확보를 위해 기존 연구 및 사례를 조사하여 품질에 영향을 미치는 다양한 요인을 분석하고, Mock-Up 실험을 통해 거푸집 제작, 콘크리트 배합, 콘크리트 타설 방법에 따른 노출콘크리트면의 품질을 비교분석하였다. 콘크리트 배합 측면에서는 단위결합재량, 단위수량, 시공측면에서는 거푸집 종류, 슬럼프, 다짐시간, 다짐방법 등 시공단계의 품질관리 기준을 제시하여 노출콘크리트의 품질관리를 위한 기초자료를 제공하고자 한다.

개질 슬래그 기반 알칼리 활성 콘크리트의 기본 물성 연구 (Fundamental Study of Alkali-Activated Concrete Properties based on Modified Slag)

  • 안지환;전성일;권수안
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-11
    • /
    • 2015
  • PURPOSES : This study set out to investigate the fundamental properties of alkali-activated concrete (AAC) using modified slag as the pavement maintenance material. METHODS: The material properties of modified slag based alkali-activated concrete (MSAAC) were analyzed and evaluated against those of alkali-activated slag concrete (AASC). Several mix formulations were considered, including one MSACC and four AASCs. The main variables considered in the study were slump, air content, compressive strength, rapid chloride permeability test, scaling resistance, freeze-thaw test, XRD, SEM, and EDS. RESULTS: MSAAC exhibits a compressive strength in excess of 21 MPa six hours after curing. Also, the charge passed of the MSACC was found to be less than 2000 coulombs after seven days and about 1000 coulombs after 28 days. The weight loss determined from a scaling test did not exceed $1kg/cm^2$ in the case of the MSACC, but that of the AASCs had already exceeded $1kg/cm^2$ at the 10th cycle. Based on the results of the freeze-thaw test, the relative dynamic modulus of every mix was found to be in excess of 90%. An energy dispersive spectroscopy(EDS) analysis found that the weight rate percentage of the calcium and aluminum in the MSAAC mix is twice that of the AASC mixes. CONCLUSIONS : It was found that the MSAAC mix exhibits significantly better performance than AASC mixes, based on various fundamental properties.

Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks

  • Mazloom, Moosa;Tajar, Saeed Farahani;Mahboubi, Farzan
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.401-409
    • /
    • 2020
  • Artificial neural networks are used as a useful tool in distinct fields of civil engineering these days. In order to control long-term quality of Self-Compacting Semi-Lightweight Concrete (SCSLC), the 90 days compressive strength is considered as a key issue in this paper. In fact, combined artificial neural networks are used to predict the compressive strength of SCSLC at 28 and 90 days. These networks are able to re-establish non-linear and complex relationships straightforwardly. In this study, two types of neural networks, including Radial Basis and Multilayer Perceptron, were used. Four groups of concrete mix designs also were made with two water to cement ratios (W/C) of 0.35 and 0.4, as well as 10% of cement weight was replaced with silica fume in half of the mixes, and different amounts of superplasticizer were used. With the help of rheology test and compressive strength results at 7 and 14 days as inputs, the neural networks were used to estimate the 28 and 90 days compressive strengths of above-mentioned mixes. It was necessary to add the 14 days compressive strength in the input layer to gain acceptable results for 90 days compressive strength. Then proper neural networks were prepared for each mix, following which four existing networks were combined, and the combinatorial neural network model properly predicted the compressive strength of different mix designs.

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

질산칼슘 혼화재를 사용한 신속개방형 포장 콘크리트의 적정배합비 도출 (Mix Proportions of Early-Strength Pavement Concrete Using Calcium Nitrate)

  • 원종필;이시원;이상우;박해균
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.95-100
    • /
    • 2009
  • 본 연구에서는 신속개방형 포장 콘크리트의 적정배합비를 도출하기 위한 실험을 실시하였다. 콘크리트 타설 후 8시간 후 교통개방을 하기 위해 조강제 및 조강시멘트를 사용하였으며 조강제의 적정 혼입량을 결정하기 위해 예비실험을 실시하였다. 이를 바탕으로 시멘트 및 잔골재율을 변수로 공기량, 슬럼프 경시변화, 응결시험, 압축강도, 휨강도 시험을 실시하였다. 실험 결과 8시간 목표 압축강도 21 MPa, 휨강도 3.8 MPa를 만족하는 신속개방형 교통개방 포장 콘크리트의 적정배합비를 도출하였다.