• Title/Summary/Keyword: concrete failure model

Search Result 910, Processing Time 0.032 seconds

Preload effects on behaviour of FRP confined concrete: Experiment, mechanism and modified model

  • Cao, Vui Van
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.597-610
    • /
    • 2020
  • Stress-strain models of fibre reinforced polymer (FRP) confined concrete have been widely investigated; however, the existing load which is always supported by structures during the retrofitting phase, namely 'preload', has been neglected. Thus, preload effects should be clarified, providing insightful information for FRP retrofitting of structures with preload conditions. Towards this aim, experiments were performed for 27 cylinder concrete specimens with the diameter 150 mm and the height 300 mm. Three specimens were used to test the compressive strength of concrete to compute the preloads 20%, 30% and 40% of the average strength of these specimens. Other 24 specimens were divided into 2 groups; each group included 4 subgroups. Four subgroups were subjected to the above preloads and no preload, and were then wrapped by 2 FRP layers. Similar designation is applied to group 2, but wrapped by 3 FRP layers. All specimens were tested under axial compression to failure. Explosive failure is found to be the characteristic of specimens wrapped by FRP. Experimental results indicated that the preload decreases 12-13% the elastic and second stiffness of concrete specimens wrapped by 2 FRP layers. The stiffness reduction can be mitigated by the increase of FRP layers. Preload negligibly reduces the ultimate force and unclearly affects the ultimate displacement probably due to complicated cracks developed in concrete. A mechanism of preload effects is presented in the paper. Finally, to take into account preload effects, a modification of the widely used model of un-preload FRP confined concrete is proposed and the modified model demonstrated with a reasonable accuracy.

Strengthening Effect Analysis of Circular Concrete Column Strengthened with Laminated CFS (적층성을 띤 CFS로 보강된 원형 콘크리트 기둥의 보강효과 해석)

  • 이상호;허원석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.89-100
    • /
    • 1999
  • The purpose of this study is to develop an analytic model of the concrete column strengthened with laminated CFS, and to provide a basic guideline for the strengthening design by CFS considering orthotropic properties of laminate. In this study, an analytical stress-strain model of laminated CFS is presented based on Tsai-Hill failure criterion. This model has been implemented in an algorithm which can evaluate the confinement effect of CFS. Through this algorithm, the stress-strain relationship of confined concrete is obtained and compared with experimental results of other studies. Using the constitutive relationships, section analyses of concrete column strengthened with CFS are done, and load-moment and load-curvature interaction curves are obtained. In addition, the strengthening effects of CFS according to various laminated angles are analyzed. Analytical results show that the strengthening effects of the strengthened concrete columns are significantly different in compression, flexure, and ductility according to the laminated ways. In compressive direction of principal stress shows the superiority, where an in flexural strengthening effects, [0/90]s does. In the aspect of ductility, [90]s shows the best effect.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Ultimate Strength Analysis of Slab-Column Joints Subjected to Lateral Loads Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 횡하중을 받는 슬래브-기둥 접합부의 극한강도 평가)

  • Son, Woo-Hyun;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.265-268
    • /
    • 2008
  • Slab-column joints have been used in the constructions of many structures and buildings. However, as the prediction of the failure behavior and ultimate strength of the joints subjected to lateral loadings is very difficult, the current building and structural design codes do not explain the failure behavior of the joints clearly. In this study, the applicability of the 3-dimensional grid strut-tie model approach, suggested for analysis and design of 3-dimensional structural concrete with disturbed regions, to the ultimate analysis and design of the joints is examined by evaluating the failure strengths of 43 slab-column joints tested to failure. The validity of the 3-dimensional grid strut-tie model approach is also verified by comparing the strength evaluation results with those by ACI 318-05 and FIB 1999.

  • PDF

Strain-Based Shear Strength Model for Prestressed Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

A Nonlinear Finite Element Analysis of Hybrid Coupled Shear Wall Connections governed Panel Shear Failure (패널 전단파괴형 복합 병렬 전단벽 접합부의 비선형 유한요소해석)

  • Han Min Ki;Kim Sun Woo;Park Wan Shin;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.175-178
    • /
    • 2005
  • The major object of this paper is to propose a nonlinear finite element analysis(FEA) technique of steel coupling beams-wall connections governed panel shear failure using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed steel coupling beams-wall connections. The developed models account for the effect of material inelasticity, concrete cracking, panel shear failure and geometric nonlinearity. In order to verify the proposed FEA model, this study attended experiment considered parameters to the steel beam : face bearing plates, and horizontal ties. And the analytical result attended by the proposed FEA model validated through comparisons with the experimental results. Finally, the study estimated the analytical values compared with ASCE Design Guidelines. At this time, the analysis showed good agreement between the theoretical and experimental results.

  • PDF

A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading (폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식)

  • Kwak, Hyo-Gyoung;Gang, HanGul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • A tensile failure criterion that can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept is introduced, and conventional plasticity based damage models for concrete such as CSC model and HJC model, which are generally used for the blast analyses of concrete structures, are compared with orthotropic model in blast test to verify the proposed criterion. The numerical prediction of the time-displacement relations in mid span of the beam during blast loading are compared with experimental results. Analytical results show that the numerical error is substantially reduced and the accuracy of numerical results is improved by applying a unique failure strain value determined according to the proposed criterion.

Discrete crack analysis for concrete structures using the hybrid-type penalty method

  • Fujiwara, Yoshihiro;Takeuchi, Norio;Shiomi, Tadahiko;Kambayashi, Atsushi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.587-604
    • /
    • 2015
  • The hybrid-type penalty method (HPM) is suitable for representing failure phenomena occurring during the transition from continua to discontinua in materials such as concrete. Initiation and propagation of dominant cracks and branching of cracks can easily be modeled as a discrete crack. The HPM represents a discrete crack by eliminating the penalty that represents the separation of the elements at the intersection boundary. This treatment is easy because no change in the degrees of freedom for the discrete crack is necessary. In addition, it is important to evaluate the correct deformation of the continua before the crack formation is initiated. To achieve this, we implemented a constitutive model of concrete for the HPM. In this paper, we explain the implemented constitutive model and describe the simulation of an anchor bolt pullout test using the HPM demonstrating its capability for evaluating progressive failure.

Reliability analysis of Industrial plant reinforced concrete columns

  • Cheng, Zhengjie;Yao, Jitao;Gao, Jun
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Based on the design of reinforced concrete columns in Chinese design codes, the failure function of reinforced concrete (RC) columns cannot be expressed as a linear function. This makes it difficult to reveal the level of reliability control in Chinese design code. Therefore, the failure function of dimensionless form is established in this paper, and the typical components (Industrial plant columns) are selected for analysis. At last, numerical simulation proves that the proposed model can be used to analysis reliability of columns. The results based on this model indicate that there is a strong difference in the reliability of RC columns designed with different design parameters, and the reliability would be lower when the eccentricity produced by crane load is smaller.

Strength Prediction Model for Flat Plate-Column Connections (플랫 플레이트 내부 접합부의 강도산정모델)

  • 최경규;박홍근;안귀용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF