DOI QR코드

DOI QR Code

Insights from LDPM analysis on retaining wall failure

  • Received : 2023.12.01
  • Accepted : 2024.02.01
  • Published : 2024.05.25

Abstract

A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Keywords

Acknowledgement

We acknowledge the Ariel HPC Center at Ariel University for providing computing resources that contribute to the research results reported in this paper. Special thanks are extended to Dr. Amit Kashi and Dr. Amir M. Michaelis for their consistent support and expertise in HPC and its applications.

References

  1. Abdolpour, H., Garzon-Roca, J., Sena-Cruz, J.M., Barros, J.A.O. and Valente, I.B. (2020), "FEM-based numerical strategy for analysis of composite modular floor prototype for emergency housing applications", J. Struct. Eng., 146(1), 04019172. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002459.
  2. Alnaggar, M., Pelessone, D. and Cusatis, G. (2019), "Lattice discrete particle modeling of reinforced concrete flexural behavior", J. Struct. Eng., 145(1), 04018231. https://doi.org/10.1061/(asce)st.1943-541x.0002230.
  3. Bazant, Z.P. (1984), "Size effect in blunt fracture: Concrete, rock, metal", J. Eng. Mech., 110(4), 518-535. https://doi.org/10.1061/(asce)0733-9399(1984)110:4(518).
  4. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Method. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO,2-S.
  5. Belytschko, T., Chen, H., Xu, J. and Zi, G. (2003), "Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment", Int. J. Numer. Method. Eng., 58(12), 1873-1905. https://doi.org/10.1002/nme.941
  6. Bentz, E.C. (2019), "Empirical modeling of cracking in reinforced concrete", ACI Struct. J., 116(3), 233-242. https://doi.org/10.14359/51714476
  7. Chauhan, V.B., Dasaka, S.M. and Gade, V.K. (2015), "Investigation of failure of a rigid retaining wall with relief shelves", 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, Fukuoka, Japan, November.
  8. Cusatis, G., Rezakhani, R., Alnaggar, M., Zhou, X. and Pelessone, D. (2014), "Multiscale computational models for the simulation of concrete materials and structures", Computational Modelling of Concrete Structures - Proceedings of EURO-C 2014, Bad Hofgastein, Austria, February-March.
  9. Cusatis, G., Mencarelli, A., Pelessone, D. and Baylot, J. (2011), "Lattice discrete particle model (ldpm) for failure behavior of concrete II: Calibration and validation", Cement Concrete Compos., 33(9), 891-905. https://doi.org/10.1016/j.cemconcomp.2011.02.010.
  10. Cusatis, G., Pelessone, D. and Mencarelli, A. (2011), "Lattice Discrete Particle Model (LDPM) for failure behavior of concrete I: Theory", Cement Concrete Compos., 33(9), 881-890. https://doi.org/10.1016/j.cemconcomp.2011.02.011.
  11. Dafalias, Y.F. (1986), "Bounding surface plasticity I: Mathematical foundation and hypoplasticity", J. Eng. Mech., 112(9), 966-987. https://doi.org/10.1061/(asce)0733-9399(1986)112:9(966).
  12. Dragon, A. and Mroz, Z. (1979), "A continuum model for plastic-brittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137. https://doi.org/10.1016/0020-7225(79)90058-2.
  13. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quart. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291
  14. Fascetti, A., Ichimaru, S. and Bolander, J.E. (2022), "Stochastic lattice discrete particle modeling of fracture in pervious concrete", Comput. Aid. Civil Infrastr. Eng., 37(14), 1788-1808. https://doi.org/10.1111/mice.12816.
  15. Fekadu Haile, B., Lifshitz Sherzer, G., Peterson, K. and Grasselli, G. (2023), "Progressive highly stressed volume for size effect analysis", Constr. Build. Mater., 400, 132600. https://doi.org/10.1016/j.conbuildmat.2023.132600.
  16. Feng, J., Yao, W., Li, W. and Li, W. (2017), "Lattice discrete particle modeling of plain concrete perforation responses", Int. J. Impact Eng., 109, 39-51. https://doi.org/10.1016/j.ijimpeng.2017.05.017.
  17. Grigorovitch, M. and Gal, E. (2017), "Homogenization of non-periodic zones in periodic domains using the embedded unit cell approach", Comput. Struct., 179, 95-108. https://doi.org/10.1016/j.compstruc.2016.11.001.
  18. Grigorovitch, M. and Gal, E. (2015), "The local response in structures using the Embedded Unit Cell Approach", Comput. Struct., 157, 189-200. https://doi.org/10.1016/j.compstruc.2015.05.006.
  19. Grigorovitch, M., Gal, E. and Waisman, H. (2021), "Embedded unit cell homogenization model for localized non-periodic elasto-plastic zones", Comput. Mech., 68(6), 1437-1456. https://doi.org/10.1007/s00466-021-02077-3.
  20. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Central South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y.
  21. Hansen, E., William, K. and Carol, I. (2001), "A two-surface anisotropic damage/plasticity model for plain concrete", ourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, Cachan, France, May-June.
  22. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  23. Israeli Standards Institution (2022), SI 466 Part 1: Concrete Code: General Principles, Israeli Standards Institution, Tel Aviv, Israel.
  24. Jin, L., Yu, W., Li, D. and Du, X. (2021), "Numerical and theoretical investigation on the size effect of concrete compressive strength considering the maximum aggregate size", Int. J. Mech. Sci., 192, 106130. https://doi.org/10.1016/j.ijmecsci.2020.106130.
  25. Lale, E., Rezakhani, R., Alnaggar, M. and Cusatis, G. (2018), "Homogenization coarse graining (HCG) of the lattice discrete particle model (LDPM) for the analysis of reinforced concrete structures", Eng. Fract. Mech., 197, 259-277. https://doi.org/10.1016/j.engfracmech.2018.04.043.
  26. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(asce)0733-9399(1998)124:8(892).
  27. Lifshitz Sherzer, G., Fadakar Alghalandis, Y. and Peterson, K. (2022), "Introducing fracturing through aggregates in LDPM", Eng. Fract. Mech., 261, 108228. https://doi.org/10.1016/j.engfracmech.2021.108228.
  28. Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(asce)0733-9399(1989)115:2(345).
  29. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Method. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO,2-J.
  30. Pathirage, M., Tong, D., Thierry, F., Cusatis, G., Gregoire, D. and Pijaudier-Cabot, G. (2023), "Discrete modeling of concrete failure and size-effect", Theoret. Appl. Fract. Mech., 124, 103738. https://doi.org/10.1016/j.tafmec.2022.103738.
  31. Reddy, S.K., Kumar, S., Varadarajan, K.M., Marpu, P.R., Gupta, T.K. and Choosri, M. (2018), "Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites", Mater. Sci. Eng.: C, 92, 957-968. https://doi.org/10.1016/j.msec.2018.07.029.
  32. Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes", 9th International Symposium on the Effects of Munitions with Structures, Berlin-Strausberg, Germany, May.
  33. Salari, M.R., Saeb, S., Willam, K.J., Patchet, S.J. and Carrasco, R.C. (2004), "A coupled elastoplastic damage model for geomaterials", Comput. Method. Appl. Mech. Eng., 193(27-29), 2625-2643. https://doi.org/10.1016/j.cma.2003.11.013.
  34. Shao, J.F., Chiarelli, A.S. and Hoteit, N. (1998), "Modeling of coupled elastoplastic damage in rock materials", Int. J. Rock Mech. Min. Sci., 35(4-5), 444. https://doi.org/10.1016/s0148-9062(98)00131-4.
  35. Sherzer, G., Gao, P., Schlangen, E., Ye, G. and Gal, E. (2017), "Upscaling cement paste microstructure to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters", Mater., 10(3), 242. https://doi.org/10.3390/ma10030242.
  36. Sherzer, G.L., Alghalandis, Y.F., Peterson, K. and Shah, S. (2022), "Comparative study of scale effect in concrete fracturing via lattice discrete particle and finite discrete element model" Eng. Fail. Anal., 135, 106062. https://doi.org/10.1016/j.engfailanal.2022.106062.
  37. Shin, K.J., Lee, K.M. and Chang, S.P. (2008), "Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites", Struct. Eng. Mech., 30(2), 147-164. https://doi.org/10.12989/sem.2008.30.2.147.
  38. Si, H. (2006), TetGen - A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany.
  39. Torrent, R.J., Brooks, J.J., Torrent, R.J. and Brooks, J.J. (1985), "Application of the highly stressed volume approach to correlated results from different tensile tests of concrete", Mag. Concrete Res., 37(132), 175-184. https://doi.org/10.1680/macr.1985.37.132.175.
  40. Troemner, M.A. (2022), "Multiscale lattice discrete particle modeling of concrete micromechanics, scaling, dynamics", Doctoral Dissertation, Northwestern University, Evanston, IL, USA.
  41. Uddin, M.T., Mahmood, A.H., Kamal, M.R.I., Yashin, S.M. and Zihan, Z.U.A. (2017), "Effects of maximum size of brick aggregate on properties of concrete", Constr. Build. Mater., 134, 713-726. https://doi.org/10.1016/j.conbuildmat.2016.12.164.
  42. Yu, Y., Yin, J. and Zhong, Z. (2006), "Shape effects in the Brazilian tensile strength test and a 3D FEM correction", Int. J. Rock Mech. Min. Sci., 43(4), 623-627. https://doi.org/10.1016/j.ijrmms.2005.09.005.