• Title/Summary/Keyword: concrete confinement

Search Result 653, Processing Time 0.038 seconds

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

A Study on the Strength and Ductility Effect of High-Strength Concrete Columns Confined by Tied Hoops (띠근에 의한 고강도 콘크리트 기둥부재의 강도 및 연성효과에 관한 연구)

  • 박훈규;송재호;한상묵;장일열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.609-614
    • /
    • 1998
  • Lateral pressure by tied reinforcement greatly enhances the maximum strength and ductility of columns under concentric loading. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at the point of tied high-strength concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at the point was proposed. It is based on calculation of lateral confinement pressure generate from tensile that develop in transverse reinforcement.

  • PDF

Evaluate Anchorage Strength of High Relative Rib Area Bars Using Hook Test Specimens (갈고리 시험체를 이용한 높은마디면적 철근의 정착성능)

  • Seo Dong Min;Hong Gi Suop;Choi Dong Uk;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.327-330
    • /
    • 2005
  • Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force in practice has a limitation. Thus, the only variable is the bearing area corresponding to the change of bond force. In this study, to the evaluate anchorage strength of high relative rib area bars, hook bond test specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher anchorage strength than lower rib higher bars.

  • PDF

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets (외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성)

  • Choi, Eunsoo;Jung, Chunsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • This study analyzes the characteristics of bond behavior of concrete, which is confined by external jackets such as shape memory alloy (SMA) and steel, according to confinement and stiffness ratios of the external jackets. For this purpose, SMA wires with 1.0 mm diameter and steel plates with 1.0 and 1.5 thickness are used to induce difference on confinement and stiffness ratios and, then, bond strength and behavior are analyzed considering the two factors. When external jakcets are used for the concrete cylinders, bond strengths of specimens increase and their bond failures are transferred from splitting failure to pull-out failure and, thus, the external jackets show confining effect. Bond strenght of concrete increase with increasing confinement and stiffness ratios of the external jackets. However, maximal circumferential strains decrease linearly with increasing the two values.

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.