• Title/Summary/Keyword: conceptual structural design

Search Result 216, Processing Time 0.026 seconds

A Study on the Semantic Web based Research Results Information Retrieval System (시맨틱 웹 기반의 연구성과물 검색시스템에 관한 연구)

  • Park, Dong-Jin
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.355-361
    • /
    • 2006
  • It has lately been recognized that the sharing and exchanging of the research results information is the critical factor to improve the research productivity. So many institutions are planning or developing the information systems which provide the research information services for researcher. But it has very difficulty in integrating the research resources information due to the dispersion and heterogeneity in data sources, and semantic and structural difference in describing data. We propose the semantic web based methodology and conceptual framework for raising the interoperability of metadata about research results information, which will support the integration of the distributed research data for information services in the end. Finally we proposed the conceptual architecture of research information service system which shows the main components, the functional requirements, and the principal and design direction at implementing the system.

  • PDF

Antecedent Variables that Influence Personalization in Apparel Products Shopping - Clothing Involvement, Monthly Clothing Expenditures, Additional Expenses - (개인화된 의류상품과 서비스에 대한 소비자 태도에 영향을 미치는 요인)

  • Kim, Yeon-Hee;Lee, Kyu-Hye
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.4
    • /
    • pp.58-71
    • /
    • 2008
  • The demand for personalized products and service of apparel product has increased dramatically. In order to acquire a personalized apparel product, consumers may have to sacrifice more expense or time. The purpose of this study was to investigate various personalization strategies in apparel business and to identify antecedents that influence the process. Clothing involvement and two price related variables (clothing expense and willingness to pay more) were included in the study as antecedents. Four personalization strategies were included in the study: design selection, size customization, in-store service and promotion personalization. For an empirical study, a conceptual model was designed and research questionnaire was developed. A measure of personalization of apparel shopping was developed based on existing scale items of prior research and a pilot study. Data from 766 men and women in their twenties to forties were used for statistical analysis. Structural Equation Modeling was used for the data analysis. Results indicated that the conceptual model was a good fit to data. Structural paths indicated that there was significant influence of clothing involvement on design selection and sales promotion personalization strategies. Involved consumers spent more on chothing products and were likely to pay more on personalized products and services. Monthly clothing expense influenced size customization significantly. It also had negative influence on service related personalization strategies. Consumers were willing to pay more when it comes to product related personalization strategies such as design and size but not necessarily to service related strategies. This study was an attempt to provide an in-depth and synthesized approach on consumer attitudes toward personalization of apparel products.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Seat Model Study for Autonomous Vehicle (자율주행자동차 전용 시트 모델 연구)

  • Seongho, Kim;Subin, Kim;Kyeonghee, Han; Jaeho, Shin;Kyungjin, Kim;Hyung-Jin, Chang;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2022
  • In the development of automated driving, interest in the interior parts of vehicle is to become more significant in terms of the occupant safety and comfort. This study proposed an optimal design of front seat according to the design requirements for frame stiffness and seat comfort. For the seat comfort, the appropriate foam thickness was obtained using the structural analysis under reclined occupant loadings. While the strength and stiffness analyses were performed to evaluate the seat frame structure. Topology optimization was carried out based on the simulation results and the derived optimal model and baseline seat design was updated. The conceptual seat design for the autonomous vehicle in this study showed that the model development process is appropriate for the design parameters in both frame stiffness and seat comfort.

Development of CAD System for Optimal Topology Design using Density Distribution (밀도 분포를 이용한 최적 위상 설계 시스템의 개발)

  • 정진평;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

Optimal Topoloty Design of Structures and Ribs Using Density Distribution (밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계)

  • Chung, Jinpyung;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

Probabilistic Load Analysis for Tailplane Considering Uncertainties in Design Variables (설계변수의 불확실성을 고려한 미익 하중의 확률론적 해석)

  • Choi, Yong-Joon;Kim, In-Gul;Lee, Seok-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1043-1050
    • /
    • 2010
  • This paper examined the probabilistic load analysis for the tailplane during pitching maneuvering in the conceptual aircraft design phase. The flight load analysis based on the probabilistic distribution of design variables are compared with the results of the deterministic analysis. Two forms of variable distribution are used in this paper. One is standard normal distribution, the other distribution is calculated from the results of short-period longitudinal equation of aircraft motion. The influence of the distribution parameter on the probabilistic load analysis was investigated and the significant design variables that have an impact on the mean and variance of probabilistic load were identified. The comparison indicates that probabilistic load analysis provides more reliable probabilistic load distribution for the structural design than the traditional deterministic analysis.

Structural Analysis for the Conceptual Design of a High Level Radioactive Waste Repository in a Deep Deposit (심지층 고준위 방사성 폐기물 처분장의 개념설계를 위한 구조적 안정성 해석)

  • 권상기;장근무;강철형
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.102-113
    • /
    • 1999
  • Two-dimensional and three-dimensional DEM programs, UDEC and 3DEC, were used to investigate the mechanical stability of the conceptual design of deposition drift and deposition holes constructed in a crystalline rock mass. From the simulations, the influence of discontinuities, the number of deposition holes, and deposition hole interval on the stability of deposition drift and deposition holes could be determined. From the two-dimensional and three-dimensional analysis. it was concluded that three-dimensional analysis should be carried 7ut fur deriving reliable conclusions. Even though the deposition hole interval changed from 8 m to 3 m, which did not damage the mechanical stability of the deposition drift.

  • PDF

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

A Study and Design on Tank Container for Fuel Tank of LNG Fueled Ship (LNG 연료 추진선의 연료 탱크로서 탱크컨테이너의 적용성 연구 및 구조설계)

  • Kim, Tae-Woo;Suh, Yong-Suk;Jang, Ki-Bok;Chun, Min-Sung;Lee, Kang-Dae;Cha, Kyong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.504-511
    • /
    • 2012
  • The objective of this study is to investigate tank container to be used as fuel tank for LNG fueled ship. Feasibility of tank container to the fuel tank of LNG fueled ship is addressed and the advantage of tank container as fuel tank of ship is investigated. Conceptual configuration of the tank container is designed as well as structural analyses based on finite element method are carried out to meet the design regulation suggested by shipping register. Static loading is considered by structural analysis and impact test is performed. It is necessary to require SRS(shock response spectrum) in order to investigate structural safety which can meet.