• Title/Summary/Keyword: concave structure

Search Result 98, Processing Time 0.028 seconds

The Development of Mechanical Damper Using the Friction Pendulum Principle (마찰 진자 원리를 적용한 기계식 댐퍼의 개발에 관한 연구)

  • Lee, You-In;Han, Woo-Jin;Ji, Yong-Soo;Baek, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • Recently, the earthquake has been increasing a lot, damage of electric power facility has been serious as well. Nowadays, the importance of pipe support system such as Hanger, Brace, Snubber connecting the main structure have been emphasized. These devices can prevent pipe from damage so that reduce the vibration and shock acting on the pipe. For this reason, the FCD(Friction Concave Damper) was developed and has been expected to reduce the vibration on the pipe through the Friction Pendulum System. This paper was described the introduction of self-developed mechanical damper using the friction pendulum principle and the characteristic test was performed to verify the performance of the device. Additionally the test results have been compared with predicted F.A.P(FCD Analysis Program-self developed) results. As a result, reliability of design could be improved.

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.25-39
    • /
    • 2010
  • We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.

Feedrate Optimization Using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

Magnifying Block Diagonal Structure for Spectral Clustering (스펙트럼 군집화에서 블록 대각 형태의 유사도 행렬 구성)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1302-1309
    • /
    • 2008
  • Traditional clustering methods, like k-means or fuzzy clustering, are prototype-based methods which are applicable only to convex clusters. On the other hand, spectral clustering tries to find clusters only using local similarity information. Its ability to handle concave clusters has gained the popularity recent years together with support vector machine (SVM) which is a kernel-based classification method. However, as is in SVM, the kernel width plays an important role and has a great impact on the result. Several methods are proposed to decide it automatically, it is still determined based on heuristics. In this paper, we proposed an adaptive method deciding the kernel width based on distance histogram. The proposed method is motivated by the fact that the affinity matrix should be formed into a block diagonal matrix to generate the best result. We use the tradition Euclidean distance together with the random walk distance, which make it possible to form a more apparent block diagonal affinity matrix. Experimental results show that the proposed method generates more clear block structured affinity matrix than the existing one does.

  • PDF

Evaluation and Prediction of Failure Factors by Quantification Theory(II) on Banking Slopes in Forest Road (수량화(數量化)II류(類)에 의한 임도(林道) 성토사면(盛土斜面)의 붕괴요인(崩壞要人) 평가 (評價) 및 예측(豫測))

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.240-248
    • /
    • 1999
  • On the basis of data obtained from five forest roads collapsed due to a heavy rainfall of 1995 in Chunchon, Kangwon-do, this study was carried out to evaluate and predict the fill slope failure of forest roads with four factors of forest road structure and those of location condition by using Quantification theory(II). The results were summarized as follows ; In the structure factors of forest road, the fill slope failure was mainly occurred in longitudinal gradients less than $2^{\circ}$ or more than $4^{\circ}$, distance of surface-flow longer than 80m, fill slope length greater than 6m, and fill slope gradients steeper than $35^{\circ}$. In the factors of location condition, the failure was mainly occurred in ridge portion of road position, weathered rock and soft rock of constituent material, slope gradients in the range from $35^{\circ}$ to $45^{\circ}$, and concave and convex of longitudinal slope forms. The priority order for factors influencing on fill slope failure was ranked by fill slope length, constituent material, road position, and so on. And the rate of correct discrimination by analysis of fill slope failure was estimated at the high prediction of 86.5%.

  • PDF

Geological structure of the Ogcheon metamorphic zone in the Busan areal Korea: a new geodynamic model to the Heart-shaped Busan gneiss complex (부산지역에서 옥천변성대의 지질구조: 하트상 부산 편마암복합체에 대한 새로운 지구조모델)

  • 강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.106-120
    • /
    • 2001
  • The Busan area in the northeastern part of the Ogcheon metamorphic zone, Korea, consists mainly of Precambrian Busan and Bakdallyeong gneiss complexes, Ogcheon metamorphic rocks and Mesozoic granitoids. The Busan gneiss complex shows Heart-shaped distribution laying down eastward, and is surrounded by the Ogcheon metamorphic rocks in the central part of the Busan area. In this study structural examination on the main constituent rocks (Busan gneiss complex and Ogcheon metamorphic rocks) was conducted to clarify the geological structure of the Ogcheon metamorphic zone in the Busan area. It indicates that the geological structure was formed at least by three phases of deformation. (1) Dl deformation: the formative period of the structural units of WNW trend (Sanjeoteo, Busan-II, Busan-I, and Chungiu nappes) and the mylonitic foliations related to the compression of NNE-SSW direction, (2) D2 deformation: the differential E-W shortening and N-S extension period of the structural units of WNW trend related to the compression of E-W or WNW-ESE directions, (3) D3 deformation: the formative period of the kink or open folds of E-W trend related to the compression of N-S direction in the eastern and southern parts of Busan area where the structural units of N-S or NNE trends reoriented owing to the intense D2 deformation were developed. These three phases of deformation are closely connected with the distribution of the structural units and the Heart-shaped Busan gneiss complex laying down eastward, and in this paper a new geodynamic model to the Heart-shaped Busan gneiss complex is suggested: Dl deformation-the zonal distribution of WNW trend with a constant width, D2 deformation - the formation of convex wedges northeastward and southward, D3 deformation - the formation of concave wedge westward.

  • PDF

Improvement of Building-Construction Algorithm for Using GIS data and Analysis of Flow and Dispersion around Buildings (GIS 자료사용을 위한 건물 구축 알고리즘 개선 및 건물 주변 흐름과 확산 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.731-742
    • /
    • 2014
  • In this study, we developed a new algorithm which can construct model buildings used as a surface boundary in numerical models using GIS with latitudinal and longitudinal information of building vertices. The algorithm established the outer boundary of a building first, by finding segments passing neighboring two vertices of the building and connecting the segments. Then, the algorithm determined the region inside the outer boundary as the building. The new algorithm overcame the limit that the algorithm developed in the previous study had in constructing concave buildings. In addition, the new algorithm successfully constructed a building with complicated shape. To investigate effects of the modification in building shape caused by the building-construction algorithm on flows and pollutant dispersion around buildings, a computational fluid dynamics model was used and three kinds of building type were considered. In the downwind region, patterns in flow and pollutant dispersion were little affected by the modification in building shape caused. However, because of reduction in air space resulted from the building-shape modification, vortex structure was not resolved or smaller vortex was resolved near the buildings. The changes in flow pattern affected dispersion patterns of scalar pollutants emitted around the buildings.