• Title/Summary/Keyword: computer interface

Search Result 2,980, Processing Time 0.034 seconds

High-Speed Signaling in SDARM Bus Interface Channels : Review

  • Park, Hong-June;Sohn, Young-Soo;Park, Jin-Seok;Bae, Seung-Jun;Park, Seok-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.50-69
    • /
    • 2001
  • Three kinds of high-speed signaling methods for synchronous DRAM (SDRAM) bus interface channels (PC-133, Direct-Rambus, and SSTL-2) were analyzed in terms of the timing budget and the physical transmission characteristics. To analyze the SDRAM bus interface channels, loss mechanisms and the effective characteristic impedance method were reviewed and the ABCD matrix method was proposed as an analytic and yet accurate method. SPICE simulations were done to get the AC responses and the eye patterns of the three SDRAM bus interface channels for performance comparisons. Recent progress and future trend for SDRAM bus interface standards were reviewed.

  • PDF

Design and Implementation of Tangible Interface Using Smart Puck System

  • Bak, Seon Hui;Lee, Jeong Bae;Kim, Jeong Ho;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, we propose a novel tangible interface system whose system does not use the expensive hardware is introduced. This proposed tangible interface is used on the table top capacitive multi touch-screen. The tangible interface apparatus which is called smart puck has sanguine arduino compatible board. The board has a Cds photo-sensing sensor and the EPP8266 WiFi module. The Cds sensor decodes the photometric PWM signals from the system and sends corresponding information to the system via TCP/IP. The system has a server called MT-Server to communicate with the smart pucks. The tangible interface shows reliable operation with fast response that is compatible to the expensive traditional devices in the market.

Interface Development for the Point-of-care device based on SOPC

  • Son, Hong-Bum;Song, Sung-Gun;Jung, Jae-Wook;Lee, Chang-Su;Park, Seong-Mo
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • This paper describes the development of the sensor interface and driver program for a point of care (POC) device. The proposed pac device comprises an ARM9 embedded processor and eight-channel sensor input to measure various bio-signals. It features a user-friendly interface using a full-color TFT-LCD and touch-screen, and a bluetooth wireless communication module. The proposed device is based on the system on a programmable chip (SOPC). We use Altera's Excalibur device, which has an ARM9 and FPGA area on a chip, as a test bed for the development of interface hardware and driver software.

Making a comparison study on Usability of the Computer Aided Idea Generation System -Focused on the User Interface of the Creative Group thinking System(CGTS)- (컴퓨터 지원 발상시스템의 사용성 비교 -CGTS(Creative Group Thinking System) UI를 중심으로-)

  • 정승호;한경돈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.57-62
    • /
    • 2003
  • At the beginning stage of design process, the concept design is required to equip the creative idea thinking and exerts critical effect on the success of production. To support the idea thinking process at the stage of concept design, web-based Creative Group Thinking System(CGTS) was developed. In this vein, the purpose of this study is to investigate the significance of HCI(Human Computer Interface) and UI(User Interface) and to find the way to increase the applicability of the UI of CGTS.

  • PDF

Design of Handwriting-based Text Interface for Support of Mobile Platform Education Contents (모바일 플랫폼 교육 콘텐츠 지원을 위한 손 글씨 기반 텍스트 인터페이스 설계)

  • Cho, Yunsik;Cho, Sae-Hong;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.81-89
    • /
    • 2021
  • This study proposes a text interface for support of language-based educational contents in a mobile platform environment. The proposed interface utilizes deep learning as an input structure to write words through handwriting. Based on GUI (Graphical User Interface) using buttons and menus of mobile platform contents and input methods such as screen touch, click, and drag, we design a text interface that can directly input and process handwriting from the user. It uses the EMNIST (Extended Modified National Institute of Standards and Technology database) dataset and a trained CNN (Convolutional Neural Network) to classify and combine alphabetic texts to complete words. Finally, we conduct experiments to analyze the learning support effect of the interface proposed by directly producing English word education contents and to compare satisfaction. We compared the ability to learn English words presented by users who have experienced the existing keypad-type interface and the proposed handwriting-based text interface in the same educational environment, and we analyzed the overall satisfaction in the process of writing words by manipulating the interface.

A Human-Robot Interface Using Eye-Gaze Tracking System for People with Motor Disabilities

  • Kim, Do-Hyoung;Kim, Jae-Hean;Yoo, Dong-Hyun;Lee, Young-Jin;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.229-235
    • /
    • 2001
  • Recently, service area has been emerging field f robotic applications. Even though assistant robots play an important role for the disabled and the elderly, they still suffer from operating the robots using conventional interface devices such as joysticks or keyboards. In this paper we propose an efficient computer interface using real-time eye-gaze tracking system. The inputs to the proposed system are images taken by a camera and data from a magnetic sensor. The measured data is sufficient to describe the eye and head movement because the camera and the receiver of a magnetic sensor are stationary with respect to the head. So the proposed system can obtain the eye-gaze direction in spite of head movement as long as the distance between the system and the transmitter of a magnetic position sensor is within 2m. Experimental results show the validity of the proposed system in practical aspect and also verify the feasibility of the system as a new computer interface for the disabled.

  • PDF

Technology Requirements for Wearable User Interface

  • Cho, Il-Yeon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.531-540
    • /
    • 2015
  • Objective: The objective of this research is to investigate the fundamentals of human computer interaction for wearable computers and derive technology requirements. Background: A wearable computer can be worn anytime with the support of unrestricted communications and a variety of services which provide maximum capability of information use. Key challenges in developing such wearable computers are the level of comfort that users do not feel what they wear, and easy and intuitive user interface. The research presented in this paper examines user interfaces for wearable computers. Method: In this research, we have classified the wearable user interface technologies and analyzed the advantages and disadvantages from the user's point of view. Based on this analysis, we issued a user interface technology to conduct research and development for commercialization. Results: Technology requirements are drawn to make wearable computers commercialized. Conclusion: The user interface technology for wearable system must start from the understanding of the ergonomic aspects of the end user, because users wear the system on their body. Developers do not try to develop a state-of-the-art technology without the requirement analysis of the end users. If people do not use the technology, it can't survive in the market. Currently, there is no dominant wearable user interface in the world. So, this area might try a new challenge for the technology beyond the traditional interface paradigm through various approaches and attempts. Application: The findings in this study are expected to be used for designing user interface for wearable systems, such as digital clothes and fashion apparel.

Designing Intuitive Spatial Game using Brain Computer Interface (뇌-컴퓨터 인터페이스를 사용한 공간 기반 게임 설계)

  • Kim, Na-Young;Yoo, Won-Dae;Lee, Yong-Il;Chung, Seung-Eun;Han, Moo-Kyoung;Yeo, Woon-Seung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1160-1165
    • /
    • 2009
  • User interface design environment has been known to be part of important elements in user experience and play, and its significance of functionalities are growing bigger each year. In present day, use of intuitive user interface design are on demand. Player can expect to get a new experience that they can not get from other exiting or similar form of games. For the better user experience, essential use of intuitive game play is necessary along with its perceptive user interface. This paper describes intuitive game environment design which will enhance user experience with use of brainwave signal for Brain Computer Interface.

  • PDF

Automatic Cognition System Design using Microprocessor

  • Kim, Si-hwan;Lin, Chi-ho;Young Huh;Kim, Ho-seok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1212-1215
    • /
    • 2002
  • This paper proposes the system that automatically cognizes the external interface cards on control board. This system is proposed by this paper endows with ID to external interface card and cognizes a connection of external interface card. Also this system automatically executes a task for external interface card. This system has an extension of function according to cognize an external interface card and is fast the execution.

  • PDF