• Title/Summary/Keyword: computer generated forces

Search Result 37, Processing Time 0.03 seconds

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

3D Affordance Field based Crowd Agent Behavior Simulation (3D 행동 유도장 기반 대규모 에이전트 행동 시뮬레이션)

  • Ok, Sooyol;Han, MyungWoo;Lee, Suk-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.629-641
    • /
    • 2021
  • Crowd behavior simulations have been studied to further accelerated and refined by parallelism by inducing agent-interacting forces into the image field representing the forces of attraction and repulsion. However, it was difficult to consider rapidly changing environments such as fire situations in buildings because texture images must be generated in advance simulation starts and simulations can only be performed in 2D spaces. In this paper, we propose a crowd agent behavior simulation method based on agent's 3D affordance field for flexible agent behavior in variable geomorphological environments in 3D space. The proposed method generates 3D affordance field related to agents and sensors in 3D space and defines the agent behavior in 3D space for the crowd behavior simulation based on an image-inducing field to a 3D space. Experimental results verified that our method enables the development of large-scale crowd behavior simulations that are flexible to various fire evacuation situations in 3D virtual spaces.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Realtime Strategy Generation System using Case-based Reasoning (사례기반 추론을 이용한 실시간 전술 생성 시스템 설계)

  • Park, Jong-An;Hong, Chul-Eui;Kim, Won-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.49-54
    • /
    • 2011
  • Case-based reasoning is an efficient method to find solutions for new problems by using past cases after appropriate changes. It is widely used in everyday life because it resembles the way human acts. In this paper, we propose a military system that generates the most appropriate tactics for CGF (Computer Generated Forces) by utilizing past practices. It indeed applies case-based reasoning at the process of armed conflict. When the CGF squad on a mission, they will be given an action plan to reach the final goal. In the process of executing, tactics for specific action should be organized such as attacks, ambushes, and tactical moves. By using the proposed method, tactics were generated by case-based reasoning. The proposed system successfully receives input through each command and control agent, measures the degree of similarity with the case in case DB, selects the most similar case, modifies, uses, and then stores it for next time.

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

Sensitivity Analysis of Anti-resonance Frequency for Vibration Test Control of a Fixture

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Kim, Jun-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1732-1738
    • /
    • 2003
  • The test specimen in environmental vibration test is connected to the fixture through several attachment points. The forces generated by the shaker must be transmitted equally to all attachment points. The forces transmitted to attachment points, however, are different because of the flexural vibration of the fixture. The variations of the transmitted force cause the under-test, especially at anti-resonance frequencies, in vibration test control. Anti-resonance frequencies at the attachment points of the fixture must be same in order to avoid the under-test in vibration test control. The structural modification of the fixture is needed so that anti-resonance frequencies at attachment points have the same value. In this paper, the method to calculate the anti-resonance frequencies and those sensitivities is presented. This sensitivity analysis is applied to the structural modification of the fixture excited at multi-points by the shaker. The antiresonance frequencies at the attachment points of the fixture can have the same value after structural modification, and the under-test in the vibration test control can be removed. Several computer simulations show that the proposed method can remove the under-tests, which are not removed in conventional vibration test control.

Effective Simulation Control for Deformable Object (변형 가능한 물체를 위한 효과적인 시뮬레이션 제어)

  • Hong, Min;Choi, Min-Hyung
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • To achieve a natural and plausible interaction with deformable objects and to setup the desirable initial conditions of simulation, user should be able to define and control the geometric constraints intuitively. In addition, user should be able to utilize the simulation as a problem solving platform by experimenting various simulation situations without major modification of the simulator. The proposed physically based geometric constraint simulation system solves the problem using a non-linear finite element method approach to represent deformable objects and constraint forces are generated by defining geometric constraints on the nodes of the object to maintain the restriction. It allows user to define and modify geometric constraints and an algorithm converts these geometric constraints into constraint forces which seamlessly integrate controllability to the simulation system. Simulator can handle linear, angular, inequality based geometric constraints on the objects. Our experimental results show that constraints are maintained in the tight error bound and preserve desired shape of deformable object during the entire simulation.

  • PDF

The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration) (내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF