• 제목/요약/키워드: computational processing time

검색결과 656건 처리시간 0.026초

고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석 (EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU)

  • 장태규;박진석;김종암
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • 제44권2호
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.

기하학적인 방법을 이용한 3 Rotary 형식 5축 가공기의 후처리 방법 (A Post-processing Method for 3 Rotary Type 5-axis Machines using Geometric Method)

  • 윤재득;정융호;박도현
    • 한국CDE학회논문집
    • /
    • 제14권5호
    • /
    • pp.291-296
    • /
    • 2009
  • This paper presents a post-processing algorithm for 5-axis machines with three rotary axes (3R-2L type). 5-axis machining needs the postprocessor for converting cutter location (CL) data to machine control (NC) data. The existing methods for post-processing use inverse kinematics equations from for-ward kinematics. However in case of 5-axis machines with three rotary axes, the inverse kinematics equations are not induced directly since the forward kinematics equations are non-linear. In order to get the joint values from the forward kinematics equations, previous algorithms use numerical method for the post-processing, which needs searching algorithms with computation time and may result in fail. This paper proposes a geometric method for the post-processing of 3 rotary type 5-axis machines. Our algorithm has three advantages: first, it does not need establishing forward kinematics equations. Second, it is reliable method that eliminates any numerical methods for the inverse kinematics, resulting in the exact solution. Finally, the proposed algorithm can also be applied to 2R-3L type of 5-axis machines.

협 양자화 제약 조건을 이용한 부호화된 영상의 후처리 (On Post-Processing of Coded Images by Using the Narrow Quantization Constraint)

  • 박섭형;김동식;이상훈
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.648-661
    • /
    • 1997
  • This paper presents a new method for post-processing of coded images based upon the low-pass filtering followed by the projection onto the NQCS (narrow quantization constraint set). We also investigate how the proposed method works on JPEG-coded real images. The starting point of the QCS-based post-processing techniques is the centroid of the QCS, where the original image belongs. The low-pass filtering followed by the projection onto the QCS makes the images lie on the boundary of the QCS. It is likely that, however, the original image is inside the QCS. Hence projection onto the NQCS gives a lower MSE (mean square error) than does the projection onto the QCS. Simulation results show that setting the narrowing coefficients of the NQCS to be 0.2 yields the best performance in most cases. Even though the JPEG-coded image is low-pass filtered and projected onto the NQCS repeatedly, there is no guarantee that the resultant image has a lower MSE and goes closer to the original image. Thus only one iteration is sufficient for the post-processing of the coded images. This is interesting because the main drawback of the iterative post-processing techniques is the heavy computational burden. The single iteration method reduces the computational burden and gives us an easy way to implement the real time VLSI post-processor.

  • PDF

Revised Computational-GOMS Model for Drag Activity

  • Lee, Yong-Ho;Jeon, Young-Joo;Myung, Ro-Hae
    • 대한인간공학회지
    • /
    • 제30권2호
    • /
    • pp.365-373
    • /
    • 2011
  • The existing GOMS model overestimates the performance time of mouse activities because it describes them in a serial sequence. However, parallel movements of eye and hand(eye-hand coordination) have been dominant in mouse activities and this eye-hand coordination is the main factor for the overestimation of performance time. In this study, therefore, the revised CGOMSL model was developed to implement eye-hand coordination to the mouse activity to overcome one of the limitations of GOMS model, the lack of capability for parallel processing. The suggested revised CGOMSL model for drag activity, as an example for one of mouse activities in this study, begins visual search processing before a hand movement but ends the visual search processing with the hand movement in the same time. The results show that the revised CGOMSL model made the prediction of human performance more accurately than the existing GOMS model. In other words, one of the limitations of GOMS model, the incapability of parallel processing, could be overcome with the revised CGOMSL model so that the performance time should be more accurately predicted.

Back-up Control of Truck-Trailer Vehicles with Practical Constraints: Computing Time Delay and Quantization

  • Kim, Youngouk;Park, Jinho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.391-402
    • /
    • 2015
  • In this paper, we present implementation of backward movement control of truck-trailer vehicles using a fuzzy mode-based control scheme considering practical constraints and computational overhead. We propose a fuzzy feedback controller where output is predicted with the delay of a unit sampling period. Analysis and design of the proposed controller is very easy, because it is synchronized with sampling time. Stability analysis is also possible when quantization exists in the implementation of fuzzy control architectures, and we show that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. Experimental results using a toy truck show that the proposed control system outperforms a conventional system.

Mesh 그룹화 방법을 이용한 EIT 정적 영상 복원의 고속화 (Fast EIT static image reconstruction using the recursive mesh grouping method)

  • 조경호;우응제;고성택
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.63-73
    • /
    • 1997
  • For the practical applications of the EIT technology, it is essential to reconstruct sttic images iwth a higher spatial resolution in a reasonalble amount of processing time. Using the conventional EIT static image reconstruction algorithms, however, the processing time increases exponential with poor convergence characteristics as we try to get a higher spatial resolution. In order to overcome this problem, we developed a recursive mesh grouping method based on the Fuzzy-GA like algorithm. Computational simulation using the well-known improve dewton-raphson method with the proposed recursive mesh grouping algorithm shows a promising result that we can significantly reduce the processing time in the reconstruction of EIT static images of a higher spatial resolution.

  • PDF

ARM9 프로세서용 실시간 JPEG2000 코덱의 구현 (A Real-Time JPEG2000 Codec Implementation on ARM9 Processor)

  • 김영태;조시원;이동욱
    • 융합신호처리학회논문지
    • /
    • 제8권3호
    • /
    • pp.149-155
    • /
    • 2007
  • 본 논문에서는 ARM9 프로세서를 위한 실시간 JPEG 2000 코덱을 구현하였다. 구현된 코덱은 프로세서, 메모리와 같은 시스템의 리소스를 효율적으로 사용할 수 있도록 제어 코드와 데이터 관리 코드를 분리하여 설계하였다. 특히 이동전화와 같은 임베디드 환경에서는 제한된 프로세서와 내부메모리를 이용하여 양질의 서비스를 제공하는 것이 매우 중요하다. ARM9계열의 프로세서는 부동소수점을 제공하지 않기 때문에 DWT와 같이 아주 반복적으로 부동소수점 연산을 필요로 하는 동작을 실행하기 위해서는 많은 연산시간이 필요하다. 제안된 코덱은 이러한 단점을 극복하기 위해 고정소수점을 이용하여 프로그램을 하였다. 또한 캐시 메모리를 고려한 코드 최적화 방법을 적용하여 연산속도를 더욱 향상시켰다.

  • PDF

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안 (Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar)

  • 현유진;이종훈
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.