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Abstract: In this paper, we present implementation of backward movement control of truck-trailer 
vehicles using a fuzzy mode-based control scheme considering practical constraints and 
computational overhead. We propose a fuzzy feedback controller where output is predicted with the 
delay of a unit sampling period. Analysis and design of the proposed controller is very easy, 
because it is synchronized with sampling time. Stability analysis is also possible when quantization 
exists in the implementation of fuzzy control architectures, and we show that if the trivial solution 
of the fuzzy control system without quantization is asymptotically stable, then the solutions of the 
fuzzy control system with quantization are uniformly ultimately bounded. Experimental results 
using a toy truck show that the proposed control system outperforms a conventional system.  
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1. Introduction 

Controlling the backward movement of articulated 
vehicles, such as a tractor-trailer, has been adopted as a 
testbed for a variety of control-design methods [1]. Back-
ward movement control of computer-simulated articulated 
vehicles has been realized via intelligent controls, such as 
fuzzy control or neural control or both [2, 3]. However, 
stability of the control systems has not been elaborately 
analyzed in the literature. Since the problem of asymptotic 
stabilization for backward motion was addressed by 
Tanaka and Sano [11], simulation and experimental results 
for single- and multiple-trailer cases using a fuzzy con-
troller have been presented [1-4, 17-19, 20, 21]. 

Recently, experimental results for backward movement 
control of a truck-trailer have been reported [1, 4, 21, 22], 
where intelligent modeling and control of a truck-trailer 
was accomplished using visual sensing for state feedback 
of the system. A charge-coupled device (CCD) camera has 
been used to sense the state [1, 4, 22], and the concept of 
parallel distributed compensation (PDC) has been adopted 
to design a fuzzy controller from the corresponding 

Takagi-Sugeno(TS) fuzzy model. Practical, multiobjec-
tive design of a truck-trailer control system was presented 
[4]. Practical constraints, such as avoidance of steering 
angle saturation, removal of measurement noise, the 
jackknife phenomenon, and so on, were considered. Linear 
matrix inequality (LMI)-based fuzzy control was pre-
sented to achieve a multi-objective control design 
satisfying these practical constraints. Also, a sensor reduc-
tion technique for implementation of a control system was 
presented [22]. 

These constraints may naturally be considered in 
control design problems; however, more considerable and 
unavoidable constraints, such as computing time delay and 
quantization, which seriously affect performance and 
stability of a closed loop control system, have not been 
considered up to now. 

Computing time delay could happen in implementation 
of the control system, especially in complex sensing 
systems like truck-trailer control. Computing time delay, 
unlike the delayed system from the internal delayed 
property of the vehicle, raises an unpredictable effect on 
the stability and performance of the overall control system. 
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While computing time delay, the control system works 
depending on the control input at the previous sampling, 
and until the next control is generated, the vehicle moves 
during a long period of computing time. This results in 
unavoidable oscillation in the system, because the control 
system does not work in real time due to the unpredictable 
computing time delay. More seriously, if the control 
system comes into the uncontrollable region during the 
delay, the generated control law does not guarantee 
stability. In order to avoid the computing time delay in the 
control process, sometimes, the vehicle cannot con- 
tinuously move, and occasionally stops during the sensing 
state at every sampling [1, 4, 22]. 

Quantization is also unavoidable in implementation of 
a digital control system. It increases quantization error in 
the feedback states and the enforced control input, which 
also results in an unpredictable result on control 
performance. In all the above-mentioned research, it was 
supposed that no quantization existed, and therefore, in 
real control systems, one cannot guarantee their stability. 
Therefore, the influence of quantization error on the 
stability and performance of the control system should be 
analyzed for acceptable control performance. 

In this paper, we additionally consider two practical 
constraints: computing time delay due to the control 
process, and the quantization effect from digital 
implementation of the control architecture. The proposed 
control design guarantees stability under the existence of a 
certain delay and quantization effect. 

Digital fuzzy control systems can be defined as hybrid 
dynamic systems, which usually consist of interconnection 
of a continuous-time and a discrete-time fuzzy controller 
[15]. The analysis and design of such fuzzy systems have 
been of continuing interest for several decades. Since the 
TS fuzzy model was presented [5, 7, 17], a number of 
variants of various kinds of TS fuzzy model-based 
controllers have been proposed [6, 8], where systematic 
design of the fuzzy controller can be possible. The stability 
of most fuzzy systems could be determined by Lyapunov 
stability analysis, and the LMI-based approach has 
recently been used to determine the existence of a common 
positive definite matrix [9, 10]. However, these results do 
not take into account computing time delay and 
quantization effect in digital implementation of fuzzy 
control systems. In this paper, for backward-movement 
control of a truck-trailer vehicle, we propose a design 
method for a fuzzy feedback controller that guarantees the 
stability of the system in the presence of computing time 
delay, and we investigate qualitative stability analysis of 
the digital fuzzy control systems with quantization in both 
the controller and the interconnection elements. 

To this end, we first study the design method of a 
digital fuzzy controller (DFC) with consideration of 
computing time delay as the practical constraint. If the 
system has a considerable amount of computing time delay, 
the analysis and design of the controller are very difficult, 
because it makes the output of the controller unsyn 
chronized with the sampling time. We propose a fuzzy 
feedback controller where output is delayed with the unit 
sampling period and is predicted using current states and 
the control input to the fuzzy control system at the 

previous sampling instant. Analysis and design of the 
controller become very easy, because the output of the 
proposed controller is synchronized with the sampling time. 
Therefore, the proposed control system can be designed 
using conventional methods, such as PDC- [11] and LMI-
based analysis. 

We then study the qualitative effects of quantization of 
the proposed digital fuzzy control system. We show that if 
the trivial solution of the fuzzy control system without 
quantization is asymptotically stable, then the solutions of 
the digital fuzzy control system with quantization are 
uniformly ultimately bounded. 

To verify the validity and effectiveness of the scheme, 
the proposed fuzzy feedback controller is applied to back-
up control of a truck-trailer vehicle, considering the 
constraints of computing time delay and quantization. 

2. Related Work 

In a discrete-time fuzzy system with control input to 
the fuzzy model, the dynamic properties of each subspace 
can be expressed with the following fuzzy IF-THEN rules. 

 

 1 1Rule : ( ) ( )
( 1) ( ) ( )

i n in

i i

i   If x k  is M   and x k  is M
           THEN k k k+ = +x A x B u

L
 (1) 

 
where 1, 2, , ,i    r= L Mij is the i,j-th fuzzy set, 

[ ]1 2( ) ( ) ( ) ( ) T n
nk x k x k x k= ∈ℜx L represents the 

state vector of the fuzzy system, and ( )k =u  

[ ]1 2( ) ( ) ( ) T m
mu k u k u k ∈ℜL  represents the input of 

the fuzzy system. If the set of ( ( ), ( ))k kx u  is given the 
output of the fuzzy system described in (1) can be obtained 
as follows: 
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Based on the PDC concept, the fuzzy controller is 
distributively designed according to the corresponding rule 
of the fuzzy model [12]. Therefore, the PDC for the fuzzy 
model in (1) can be expressed as follows: 
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Substituting (3) into (2) gives the following closed-
loop discrete-time fuzzy system. 

 

 
1 1

( 1) ( ){ ( ) ( ) ( )}
r r

i i i j j
i j

k h k k h k k
= =

+ = −∑ ∑x A x B F x  (4) 

        
1 1

( ) ( ){ } ( )
r r

i j i i j
i j

h k  h k k
= =

= −∑∑ A B F x  

 
Defining ij i i j= −G A B F , we have 
 

 
( 1) ( ) ( ) ( )

2 ( ) ( ) ( )
2

r

i i ii
i

r
ij ji

i j
i j
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               h k h k k
<
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  (5) 

 
The stability condition can be obtained per the 

following theorem. 
Theorem 1: The equilibrium point of the closed loop 

discrete-time fuzzy system in (5) is asymptotically stable if 
there exists a common positive definite matrix P  that 
satisfies the following inequalities for all i and j except the 
set ( , )i j  satisfying ( ) ( ) 0i jh k h k⋅ = . 

 
 T

ii ii  − <G PG P 0  (6a) 

 
2 2

T

ij ji ij ji+ +⎛ ⎞ ⎛ ⎞
− ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G G G
P P 0 ,  for i j< . (6b) 

 
The proof of this theorem was given by Tanaka and 

Wang [12]. 
If 1 2 r= = = =B B B BL  in fuzzy system (2) is satisfied, 

the closed loop system (4) can be obtained as follows: 
 

 
1 1
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r r

i i j j
i j

k h k k h k k
= =

+ = −∑ ∑x A x B F x  (7) 
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1
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r
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where .i i i= −G A BF Theorem 2 can be applied to stability 
analysis of the closed loop system in (7). 

Theorem 2: The equilibrium point for the discrete-time 
fuzzy system, expressed in (2), is asymptotically stable if 
there exists a common positive definite matrix P  
satisfying the following inequalities. 

 
 T

i i − <G PG P 0 ,    for   1,2, ,i r= L  (8) 
 
The proof of this theorem was also given by Tanaka 

and Wang [12]. 
To prove the stability of the discrete-time fuzzy control 

system in Theorem 1 and Theorem 2, the common positive 
definite matrix P  must be solved. LMI theory can be 

applied to solved ,P as in Boyd et al. [13]. The stability 
condition of Theorem 1 can be transformed into the LMI 
feasibility problem as follows. 

LMI feasibility problem for the stability condition of 
Theorem 1: The problem of finding P  that satisfies the 
LMIs, >P 0  and T

i i − <G PG P 0 , 1,2, ,i r= L  or proving 
the unfeasibility in case n n

i
×∈ℜA , 1,2, ,i r= L  was put 

forward by Tanaka and Wang [12]. 
In order to guarantee the stability of the closed loop 

system in (2), the design of a PDC fuzzy controller (3) can 
be used to solve the following LMI feasibility problem 
using Schur complements [13]. 

LMI feasibility problem equivalent to the PDC design 
problem (Case I) : The problem is finding >X 0  and 

1 2, , , rM M ML  that satisfy the following inequalities. 
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1
2 ,

1
2

T
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i j

⎡ ⎤+⎢ ⎥
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⎢ ⎥+⎢ ⎥⎣ ⎦

X L L
0

L L X
  for i j<  (10) 

 
where i i i iL = A X - B M , 1,−=X P  1 1 ,=M F X  2 2 ,=M F X  
L , and r r=M F X  [12]. 

If 1 2 r= = = =B B B BL  is satisfied, the design of the 
PDC fuzzy controller in (3) is equivalent to solving the 
following LMI feasibility problem. 

LMI feasibility problem equivalent to the PDC design 
problem (Case II) : The problem is finding >X 0  and 

1 2, , , rM M ML  that satisfy the following inequality: 
 

 
{ }

, 1,2, ,
T

i i i

i i i

i r
⎡ ⎤−

> =⎢ ⎥−⎣ ⎦

X A X B M
0

A X B M X
L  (11) 

 
where 1,−=X P 1 1 ,=M F X 2 2 ,=M F X  L , and r r=M F X  
[12]. 

The feedback gain matrices 1 2, , , randF F FL  and the 
common positive definite matrix P  can be given by the 
LMI solutions, X  and 1 2, , , rM M ML , as follows:  

 
1,−=P X  1

1 1 ,−=F M X  1
2 2 ,−=F M X L , and 1

r r
−=F M X  

 (12) 

3. Practical Constraint: Computing Time 
Delay 

In practical control systems, a considerable computing 
time delay can occur in processing both sensor and 
controller parts. Let τ  be the sum of all time delays. The 
ideal fuzzy controller given in (3) can be described with 
time delay τ as 
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 1 1Rule : ( ) ( )

( ) ( )
j n jn

j

 j   If x kT  is M   and x kT  is M

           THEN kT kTτ+ = −u F x

L
 (13) 

 
where 1,2, ,j r= L . 

Because the time delay makes the output of the 
controller unsynchronized with the sampling time, 
Theorem 1 cannot be applied to this system. In this paper, 
we propose a DFC that has the following fuzzy rules with 
consideration for the time delay of the fuzzy system given 
in (4). 

 

 1 1Rule : ( ) ( )

( 1) ( ) ( )
j n jn

j j

 j   If x k  is M   and x k  is M

           THEN k k k+ = +u D u E x

L
 (14) 

 
where 1,2, ,j r= L . 

In this scheme, the output of the fuzzy controller is 
delayed by a unit sampling period and is predicted. Hence, 
analysis and design of the controller becomes straightfor-
ward because the output of the proposed controller is 
synchronized with the sampling time. 

The output of the DFC in (14) is inferred as 
 

 1

1

( ) { ( ) ( )}
( 1)

( )

r

j j j
j

r

j
j

w k  k k
k

w k  

=

=

+
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∑

∑

D u E x
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1

( ) { ( ) ( )}
r

j j j
j

h k  k k
=

= +∑ D u E x  

 
The general timing diagram of the fuzzy control loop is 

shown in Fig. 1, where T represents the sampling period of 
the control loop. vτ and cτ  are the delays of the sensor and 
the fuzzy controller, respectively. Therefore, the output of 
the controller is applied to the fuzzy model after overall 
delay v cτ τ τ= + . 

The output timings of an ideal controller, a delayed 
controller, and the proposed controller are shown in Fig. 2. 
In the ideal controller, it is assumed that there is no 
computing time delay. If this controller is implemented in 
practical systems, time delay τ is added, according to (13). 
Analysis and design of this system with the delayed 
controller are complicated, because the output of the 
controller is not synchronized with the sampling time. 

On the other hand, the analysis and design of the 

proposed controller are strainghtforward because the 
controller output is synchronized with the sampling time 
delayed by a unit sampling period. In the proposed 
controller, we can realize a control algorithm during the 
time interval vT τ−  in Fig. 1. During this time interval, a 
sophisticated algorithm, such as a fuzzy or a nonlinear 
control algorithm, can be efficiently realized in real time. 

Combining the fuzzy model in (5) with the DFC in (15), 
the closed loop system is given as 

 

 
1

( 1) ( )
( )

( 1) ( )

r
i i

i
i i i

k k
h k

k k=

+ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦
∑

A Bx x
E Du u

 (16) 

 
Defining the new state vector as [ ]( ) ( ) ( ) ,Tk k   k=w x u  

the closed loop system in (16) can be modified to 
 

 
1

( 1) ( ) ( )
r

i i
i

k h k k
=

+ =∑w G w  (17) 

 

where i i
i

i i

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
G

E D
. 

Hence, the stability condition of the closed loop system 
in (17) becomes equivalent to the sufficient condition of 
Theorem 1, and the stability can be determined by solving 
the LMI feasibility problem about the stability condition 
of Theorem 1. Also, the design problem of the DFC 
guaranteeing the stability of the closed loop system can be 
transformed into the LMI feasibility problem. To do this, 
the design problem of the DFC is transformed into the 
design problem of the PDC fuzzy controller. 

PDC design problem equivalent to DFC design 
problem: The problem is designing the PDC fuzzy 

controller 
1

( ) ( ) ( )
r

j j
j

k h k  k
=

= −∑v F w  where the fuzzy sys-

tem 
1

( 1) ( ){ ( ) ( )}
r

i i
i

k h k k k
=

+ = +∑w A w Bv  is given, where 

i i
i

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
A

0 0
, 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
B

I
, and j j j  ⎡ ⎤= − ⎣ ⎦F E D . 

Therefore, using the same notation in Section 2, the 
design problem of the DFC becomes equivalent to the LMI 
feasibility problem. 

LMI feasibility problem equivalent to DFC design 
problem: The problem is finding >X 0  and 1,M  

Fig. 1. Timing diagram of the fuzzy control loop. 

 

Fig. 2. Output timing of the controllers: the ideal, the 
delayed, and the proposed controller. 
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2 , , rM ML  that satisfy following inequality: 
 

 
{ }T

i i

i i

⎡ ⎤−
>⎢ ⎥

−⎣ ⎦

X A X B M
0

A X B M X
, 1,2, ,i r= L  (18) 

 
where 1,−=X P 1 1 ,=M F X 2 2 ,=M F X L , and r r=M F X . 

The feedback gain matrices 1 2, , , rF F FL  and the 
common positive definite matrix P  can be given by the 
LMI solutions, X  and 1 2, , , rM M ML , as follows: 

 
1,−=P X  1

1 1 ,−=F M X 1
2 2 ,−=F M X 1, r rand  −=F M XL  

 (19) 
 
Therefore, the control gain matrices 1, , ,r andD DL  

1, , rE EL  of the proposed DFC can be obtained from the 
feedback gain matrices 1 2, , , rF F FL . 

4. Practical Constraint: Quantization 

In the implementation of digital fuzzy controllers, the 
quantization process is unavoidable. In this section, we 
investigate the nonlinear effects caused by the quantization 
process. 

If x∈ℜ  is the input and ( )Q x  the output of a 
quantizer, the quantization process can be formulated as 
follows: 

 
 ( ) ( )Q x x p x= +  (20) 

 
where ( )p x  represents the nonlinear error of quantization. 
Although there are many types of quantization, we will 
concentrate on the most commonly used fixed-point 
quantization, which can be characterized as 

 
 ( )p x ε<  (21) 

 
where positive constant ε  represents the upper bound of 
quantization error.  

Therefore, the quantized state ( ( ))Q kx x  with respect to 
system state n∈ℜx  can be defined as  
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M
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  (22) 

 
where ( ( ))k ε≤x xp x . 

A similar definition for the quantized controller 
( ( ))Q ku u  with respect to control input m∈ℜu  is given as 
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M

M M

  (23) 

 
where ( ( ))k ε≤u up u . 

In practical digital control systems, the TS fuzzy model 
(24a) and controller (24b) include the quantized terms as 
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k h k k k
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∑ q qu D u E x  (24b) 

 
In fuzzy model (24a), the control input necessarily 

should be quantized, because the control law is applied by 
digital/analog (D/A) converter; however, ( )kx  is the 
internal states in the fuzzy model, and thus, should not be 
quantized. 

In fuzzy control dynamics, ( )kqu  is the quantized 
input at the previously applied sampling time, and ( )kqx  
is the quantized feedback state by sensors and A/D 
converter. The control input at the next sampling time, 

( 1),k +u should be quantized, because the generated 
control input would be applied to the fuzzy model by D/A 
converter. Hence, the calculated control law should be 
quantized, and then, the proposed digital fuzzy controller 
in (15) can be transformed into 
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 (25) 

 
The state ( )kx  in the fuzzy model in (24) and the state 

( )q kx  in the fuzzy controller in (25) need to be unified to 
derive a closed-loop equation. Therefore, we apply the 
quantization operator to the equation of the fuzzy model in 
(24) as 
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From (26) and (25), the state space model of the 

quantized closed-loop system can be obtained as 
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where ( ) ( ) ( )

T
k k k⎡ ⎤= ⎣ ⎦q qw x u  represents the augmented 

state, i i
i

i i

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
G

E D
, and 

( )
( )

( )
k

k
k

Δ⎡ ⎤
Δ = ⎢ ⎥Δ⎣ ⎦

x

u

. 

If any reference signal or noise exists, the state space 
model in (27) can be rewritten as 

 

 
1

( 1) ( ) ( ) ( ) ( )
r

i i
i

k h k k k k
=

+ = + Δ +∑w G w r  (28) 

 
where ( )kr  represents a by-product of the reference signal 
or noise. 

As a follow-up step, we analyzed the stability of the 
digital fuzzy systems with consideration of quantization 
effects. Let us define the norm || || • P  in .nℜ  In order to 
obtain the stability condition for the closed-loop system in 
(28), we define the norm || || • P  in nℜ  as 

 

 
1
2|| ( ) || ( ( ) ( ))Tk k k=Pw w Pw  (29) 

 
where n n×∈ℜP  is a symmetric positive-definite matrix. 

Definition 1: The digital fuzzy system in (27) is said to 
be uniformly ultimately bounded with bound α  if and 
only if for any 0β >  there exists ( ) 0T β > , independent 
of 0K ≥ , such that whenever K β≤w  and ( ),k T β≥ one 

has k K α+ ≤w  [15]. 

Remark 1: Uniform ultimate boundness is similar to 
uniform asymptotic stability, except that the attracting 
point 0x =  is now replaced by an attracting set given by 
{ : }.nx  x α∈ℜ ≤  

Theorem 3: If the following two conditions are 
satisfied, there exists a very small positive constant ,δ  
such that || ( ) ||k  δΔ <P  for all integers k and positive 
constant ,J  such that the closed loop system (28) is 
uniformly ultimately bounded by .Jδ  

(i) There exists a common positive-definite matrix P 
for the system 

 

 
1

( 1) ( ) ( )
r

i i
i

k h k k
=

+ =∑w G w  (30) 

 
that satisfies sufficient condition (3) in Theorem 1. 

(ii) There exists 0δ 〉  ( ) { | || || }r k B x  xδ δ∈ 〈  for 0k > . 
Proof: If there exists a common positive definite 

matrix P  satisfying sufficient condition (3) in Theorem 1, 
1
2( ( )) ( ) ( ( ) ( ))TV k k k k= =

P
w w w Pw  can be a norm 

Lyapunov function for the system in (30). 
Since the system in (30) satisfies the asymptotical 

stability by assumption, there exists a constant ,c such that 
 

(30)

1

( ( )) ( ( 1)) ( ( ))

( ) ( ) ( )

( ) ( ( )) 0 1

r

i i
i

V k V k V k

              h k k k   

             (c 1) k (c 1) V k    for c
=

Δ = + −

= −

≤ − = − < <

∑ P
P

P

w w w

G w w

w w

 

 
where (30)Δ ( ( ))V kw  denotes the first forward difference 
along the solution of the system in (30). 

The first forward difference for the closed loop system 
in (28) can be given as 

 

 

(28)
1

1

Δ ( ( ), ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( 1) ( ( )) ( )

r

i i
i

r

i i
i

V k k h k k k k

                          k

                      h k k

                         k k + k

                      c  V k  k

=

=

= + Δ +

−

≤

− + Δ

≤ − + Δ

∑

∑

p

p

P

P P P

P

w G w r

w

G w

w r

w ( )

( ( ) ( )

+ k

                      (c 1) V k  ) kδ≤ − + +
P

P

r

w r

 

 
Therefore, whenever ( )Kw  is selected so that 

( ( )) || ( ) || ,V K  K  β= ≤Pw w  then ( ( ))V Kw  must be less 
than the solution of the following comparison equation 
[17]: 

 
 1 δ ( ) ||k k kX X (c 1) X || k   for   k K+ − = − + + ≥Pr  (31) 

 
where .KX β=  

The solution of the comparison Eq. (31) can be 
obtained as 

 

 
0

1β δ ( )
1

k k
k k j

k K
j

cX c   c j K
c

−
+

=

−
= + + +

− ∑ P
r  (32) 

 
Because 0 1c< <  in (32), 0kc →  as k → ∞  and 

1

0 0

1( ) ( )
1

kk k
k j k j

k
j j

cK c j K    c
c

γ δ δ
+

− −

= =

−
≡ + 〈 =

−∑ ∑P
r . 
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Now, we can say that k KV +  uniformly converges to 
1 ( )

1 c
δ δ+

−
 for 0K ≥  as k → ∞  from the comparison 

Eq. in (31), and 1 (1 )
1

J  
c

δ
δ

= +
−

 will also converge 

because ( ) .k K k KV X+ +≤w  
If the closed loop system (27) is uniformly ultimately 

bounded by ,Jδ  the system converges to the attracting set 
{ : },m n Jδ+∈ℜ ≤

P
w w not to the equlibrium point =w 0 . 

If ( ) 0kΔ =  in closed-loop system (27) (that is, quatization 
error does not exist), the constant δ  is zero, and the 
attracting set converges to =w 0 . In this case, the closed-
loop system is asymptotically stable. 

Theorem 3 shows the analysis of qualitative charac-
teristics of the fuzzy control systems considering quanti-
zation. The positive constant J  is related to the equation 

1

( 1) ( ) ( ),
r

i i
i

k h k k
=

+ =∑w G w not to ( ).kΔ Therefore, once the 

digital fuzzy control system is stably designed, it does not 
diverge, although quantization error exists, and the smaller 
the quatization errors become, the more the asymptotic 
stability is guaranteed. 

5. Backward Movement Control of Truck-
Trailer Vehicles 

In this section, we apply the proposed controller for 
backward movement control of a truck-trailer system with 
the proposed constraints, including computing time delay, 
and we investigate the quantization effect on control 
performance. 

5.1 Model a Truck-trailer System 
Tokunaga and Ichihashi derived a model of a truck-

trailer system [16]. 

 

0 0

1 0 2

2 2 1

3 3

1 2 2

4 4

1 2 2

( 1) ( ) / tan[ ( )]
( ) ( ) ( )
( 1) ( ) / sin[ ( )]
( 1) ( )

cos[ ( )]sin[{ ( 1) ( )} / 2]
( 1) ( )

cos[ ( )]cos[{ ( 1) ( )} / 2]

x k x k vT l u k
x k x k x k
x k x k vT L x k
x k x k
         vT x k x k x k
x k x k
         vT x k x k x k

+ = +

= −

+ = +

+ =

+ + +

+ =

+ + +

 (33) 

 
where ( )u k  represents the steering angle of the truck, l  
the length of the truck, L  the length of the trailer, T  the 
sampling time, and v  the constant backward speed. 

 
0x : angle of truck 

1( )x k : angle difference between truck and trailer 

2 ( )x k : angle of trailer 

3 ( )x k : vertical position of rear end of trailer 

4 ( )x k : horizontal position of rear end of trailer 
Fig. 3 shows the schematic diagram of this system. 
 
Tanaka and Sano defined the state vector as 

[ ]1 2 3( ) ( ) ( ) ( ) Tk x k x k x k=x  in truck-trailer model (33) 
and expressed the fuzzy model using fuzzy rules [11]. 

 

 

2 1 1

1 1

2 1 2

2 2

Rule 1: ( ) { / 2 } ( )
( 1) ( ) ( )

Rule 2 : ( ) { / 2 } ( )
( 1) ( ) ( )

 If x k vT L  x k  is M
          THEN k k u k

 If x k vT L  x k  is M
          THEN k k u k

+

+ = +

+

+ = +

x A x B

x A x B

 (34) 

 

where 1

2 2

1 0 0

1 0

1
2

vT
L

vT
L

v T vT
L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A , 2

2 2

1 0 0

1 0

1
2

vT
L

vT
L

dv T dvT
L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A ,  

 

Fig. 3. A truck-trailer model and the coordinate system. 
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and 1 2 0 0 . 0.15[ ], 0.38[ ],
TvT l m L m

l
⎡ ⎤= = = = =⎢ ⎥⎣ ⎦

B B B  

1.0 [ ],v  m/s= − 2.0 [ ],T  s=  and 210 / .d π−=  Fig. 4 shows 
the membership function of the premise in the fuzzy rules 
in (34). The experimental setup is shown in Fig. 5, where 
the states of the controlled system are observed by an 
angle detection sensor, a potentiometer and a CCD camera 
similar to other research [1, 3].  

The computing time delay inevitably arises in 
generation of the control law because of the image 
processing and the fuzzy control rule computation. The 
quantization effect results from A/D conversion processing 
and image processing from state sensing. The computing 
time delay and quantization degrade the performance of 
backward movement control. Such degradation effects will 
be shown in the experimental results. 

5.2 Backward Movement Control of an 
Articulated Vehicle Using 
Conventional Control 

In this subsection, experimental results of backward 
movement control of a truck-trailer vehicle are given using 
the conventional discrete-time fuzzy controller without 
considering computing time delay and quantization effect. 

To solve the backward parking problem in (34), the 
PDC fuzzy controller can be designed as follows: 

 

 

2 1 1

1

2 1 2

2

Rule 1: ( ) { / 2 } ( )

( ) ( )
Rule 2 : ( ) { / 2 } ( )

( ) ( )

T

T

 If x k vT L  x k  is M

           THEN u k k
 If x k vT L  x k  is M

           THEN u k k

+ ⋅

=

+ ⋅

=

F x

F x

 (35) 

 

where 1

1.2837
0.4139
0.0201

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

F , and 2

0.9773
0.0709

0.0005

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

F . 

A Ricatti equation for linear discrete systems was used 
to determine these feedback gains. The detailed derivation 
of these feedback gains come from Tanaka and Sano [11]. 

Substituting (35) into (34) yields the following closed 
loop system, because 1 2= =B B B . 
 

 
2

1

( 1) ( ) ( )i i
i

k h k k
=

+ =∑x G x  (36) 

 

where 2
2 2

0.448 0.296 0.014
0.364 1 0

0.116 10 0.637 10 1− −

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥× − ×⎣ ⎦

G , and 

Fig. 4. Membership function. 

 

 

 

Fig. 5. Experimental setup for the backing-up control of truck-trailer type vehicle. 
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1

0.448 0.296 0.014
0.364 1 0

0.364 2 1

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

G . 

Since there exists the common positive matrix P , 
which satisfies the sufficient stability condition in (3), the 
closed loop system is asymptotically stable on the whole. 
That is, backward parking can be accomplished for all 
initial conditions if the computing time delay does not 
exist. The common positive matrix is given as 

 

 
113.9 92.61 2.540
92.61 110.7 3.038

2.540 3.038 0.5503

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

P  

 
However, with a real system, the ideal fuzzy controller 

in (35) can be described with the following rules due to the 
computing time delay τ . 

 

 

2 1 1

1

2 1 2

2

Rule 1: ( ) / {2 } ( )

( ) ( )
Rule 2 : ( ) / {2 } ( )

( ) ( )

T

T

  If x kT vT L  x kT  is M

           THEN u kT kT
  If x kT vT L  x kT  is M

           THEN u kT kT

τ

τ

+ ⋅

+ =

+ ⋅

+ =

F x

F x

 (37) 

Two initial conditions used for the experiments of the 
truck-trailer system are given in Table 1. 

The experiments were executed where maximum time 
delay τ  is half the sampling time (τ =1 [sec]). In the 
revised version, for comparison with the existing control 
approach, we additionally conducted experiments using the 
method proposed by Tanaka et al. [4], in which the 
experimental results for back-up control of a truck trailer 
was first shown. In the experiments, the TS fuzzy model-
based controller was adopted, and because the processing 
time for detecting the position of a truck trailer was long 
(that is, due to the computing time delay), the vehicle was 
stopped during position detection at every sampling. After 
position detection, the steering was controlled by a motor, 
and the vehicle moved shortly thereafter.  

Fig. 6 shows the back-up control results based on the 
methods of Tanaka et al. [4], in which the overall control 
processing time is as long as the intermittent movement, 
because of the computing time delay, while the backing up 
of the truck trailer was successfully accomplished.  

In order to show the influence of computing time delay 
on control performance, and the effectiveness of the 
proposed control scheme by a comparative experimental 
results, the control results based on the same control law as 
Tanaka et al. [4] without intermittent back-up movement, 
unlike the scheme of Tanaka et al. [4], has been presented. 
That is, the truck-trailer made successive movements at a 
constant backward speed, and during the computing time 
delay, the system disengaged from real-time control. The 
backing up control results are presented in Fig. 7 and Fig. 8. 
While the overall control processing time was con-
siderably reduced, unlike the control results from inter-

Table 1. The initial conditions of the truck-trailer system.

CASE x1(0) [deg] x2(0) [deg]  x3(0) [m] 
CASE I 0 0 1 
CASE II -90 135 -0.5 

 

 

Fig. 6. Experimental results by conventional discrete-
time fuzzy control. 

 

 

Fig. 7. Experimental results by conventional discrete 
time fuzzy control. 

 

 

Fig. 8. The photograph of experimental results by conventional fuzzy control. 
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mittent movement, in the experiments, serious oscillation 
occurred because of the computing time delay due to visual 
sensing and image processing for detection of the state. 

5.3 The Proposed Fuzzy Control System 
with Consideration of Computing 
Time Delay and Quantization Effect 

In this subsection, we design a DFC considering com-
puting time delay, and we analyze quantization effects on 
the control system. Following the DFC design technique in 
Section 3, we can construct a DFC for the backing up 
control problem as follows: 

 

 

2 1 1

1 1

2 1 2

2 2

Rule 1: ( ) { / 2 } ( )

( 1) ( ) ( )
Rule 2 : ( ) { / 2 } ( )

( 1) ( ) ( )

  If x k vT L  x k  is M

           THEN u k u k k
  If x k vT L  x k  is M

           THEN u k u k k

+ ⋅

+ = +

+ ⋅

+ = +

D E x

D E x

 (38) 

 
Combining (34) with (38), the augmented closed loop 

system is given as 
 

 
2

1

( 1) ( ) ( )i i
i

k h k k
=

+ =∑w G w  (39) 

 

where 1 1
1

1 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
G

E D
 and 2 2

2
2 2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
G

E D
. 

To obtain the control gain matrices 1 2 1 2, , , andD D E E  
guaranteeing the stability of the closed loop system in (39), 
we solve the LMI feasibility problem that is equivalent to 
the DFC design problem as follows. 

The problem is finding >X 0  and 1 2,  M M  that satisfy 
the following inequalities: 

 

 
{ }

, 1,2.
T

i i

i i

  for  i
⎡ ⎤−

> =⎢ ⎥
−⎣ ⎦

X A X BM
0

A X BM X
  (40) 

 

where i i
i

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A B
A

0 0
 and 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
B

I
. 

The matrices 1 2, , andX M M  in LMIs are determined 
using a convex optimization technique offered by Nesterov 
and Nemirovsky [14]. 

 

 [ ]
[ ]

1

2

157.0056 61.9680 1.6565 220.727
61.9680 50.4822 69.8423 53.4329

,
1.6565 69.8423 489.4416 2.3866

220.7727 53.4329 2.3866 442.6866

96.3672 43.1521 41.8056 5.8356 ,

116.3143 66.0021 1.3065 22.9842 .

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦
= − − −

= − − −

X

M

M

 

 
The feedback gains and a common positive definite 

matrix P  are determined by the relationship in (19) as 
follows. 

[ ]
[ ]

[ ]

1

1
1 1 1 1

1
2 2 2 2

0.0995 0.1036 0.0149 0.0370
0.1036 0.1373 0.0198 0.0350

,
0.0149 0.0198 0.0049 0.0050
0.0370 0.0350 0.0050 0.0165

3.9047 2.6765 0.3020 1.5869                =

and

   

−

−

−

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

= = −

− −

= = −

P X

F M X E D

F M X E D

[ ]3.8624 2.1564 0.3102 1.6123            = − −

(41) 

 
Therefore, the closed loop system is asymptotically 

stable on the whole, and the control gain matrices are given 
by the PDC design problem equivalent to DFC design 
problem as 1 13.9047 2.6765 0.3020 , 1.5869,= − = −⎡ ⎤⎣ ⎦E D  

2 1.6123,= −D  and  [ ]2 3.8624 2.1564 0.3102= −E . 
Next, we analyzed the stability of the fuzzy control 

system with consideration for quantization. The quanti-
zation problem is unavoidable, because of the A/D 
conversion processes using potentiometers in order to 
control the truck-trailer system.  

There exists a common positive definite matrix P  in 
(41) for the closed loop system (39) and ( )k =r 0 , since it 
is a regulation problem. Hence, all the sufficient conditions 
of Theorem 3 are satisfied. Therefore, we can say that the 
closed loop fuzzy system is uniformly ultimately bounded 
and does not diverge. 

Fig. 9 shows with precision the experimental results   
of the designed DFC with the computing time delay    
(τ =1 [sec]) and quantization effect, 210 .ε −= In the 
implementation of the control system, the quantization 
arises in state feedback by the A/D converter and camera 
sensor, for which quantization error depends on their 
resolution. It can also arise in the D/A converter for 
applying the generated control input to the truck-trailer 
system, and the error depends on the resolution of the D/A 
converter. In the experiments, we used A/D and D/A 
converters with 16-bit resolution, and because the 
manipulated bound is 2 ,π we can determine that the bound 
of the quantization error is within 0.006 degrees. Also, 
because we adopted a camera sensor with 1024 768×  pixel 
resolution, the movement range is within 8 2m m,× and the 
bound of the quantization error is within 0.008 0.003m m× . 
Therefore, we can say that the overall bound of the 
quantization error can be within 0.01. As mentioned above, 

 

Fig. 9. Experimental results from the proposed control.
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note that the bounds of the quantization error do not affect 
control stability, but only the uniform stable bound, and as 
well, the control designer need not estimate it. 

Fig. 10 shows selected experimental results for Case I. 
As can be seen in the figures, backward parking is success-
fully accomplished, compared with Fig. 7, although a 
considerable computing time delay exists. However, due to 
the quantization effects, the solution of the present 
feedback control system seems to have some oscillation 
with a small amplitude. Thus, we can say that the closed-
loop system converges to some small neighborhood of the 
origin. 

6. Conclusion 

In this paper, we presented backward movement control 
of a truck-trailer vehicle using a fuzzy model-based control. 
The practical constraints, including computing time delay 
due to control processing time and quantization from digital 
implementation of the control architecture, were considered, 
and a control design that guarantees stability under their 
existence was proposed. The stability of the system is 
guaranteed despite existence of the computing time delay, 
so real-time control processing could be possible. Further-
more, we proved that quantization has the effect of replacing 
a convergence of solutions to the origin by convergence to 
some small neighborhood of the origin. Experimental 
results show that the proposed fuzzy controller effectively 
achieves backward movement control of a truck-trailer 
vehicle, although considerable computing time delay exists. 
We also show that in the presence of quantization, the 
control system is uniformly ultimately bounded. 
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