• 제목/요약/키워드: computational calculation

검색결과 1,085건 처리시간 0.044초

폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석 (Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings)

  • 김선훈;김진웅;김광진
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.171-178
    • /
    • 1997
  • 본 연구에서는 발파로 인한 폭발하중에 대한 지하공동구조체의 3차원 동적유한요소해석을 수행하였다. 해석과정은 1차원 근원해석과정과 3차원터널해석과정의 2단계로 나누어 수행하였다. 1차원 근원해석에서는 장약공과 그 주변의 자유장을 포함하는 해석으로서 3차원 터널해석을 위한 입력하중의 계산작업을 수행한다. 본 연구에서 수행한 해석방법의 기능은 3차원 동적해석프로그램 MPDAP-3D에 추가되었으며, 향후 발파공법에 의한 지하공동구조체의 건설시 구조체의 안전성을 평가하는데 활용가능할 것으로 예상된다.

  • PDF

건축기획 매스 규모산정의 설계지식 재현을 위한 지식기반 BIM 시스템 구현 (An Implementation of Knowledge-based BIM System for Representing Design Knowledge on Massing Calculation in Architectural Pre-Design Phase)

  • 이병수;지승열;전한종
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.252-266
    • /
    • 2016
  • An architectural pre-design, which is conducted prior to the architecture design, supports fundamental configuration during the entire AEC project by predicting the cost, demand, etc., of the building, and is therefore gaining importance. In particular, the massing calculation of the pre-design phase should be prioritized, as it is fundamental to architectural outline. However, most architects depend on only their experience and intuition while conceptualizing an integrated framework of design conditions, including the building code and requirements for the massing calculation of the object. Therefore, many difficulties arise in terms of performing appropriate tasks. Thus, the purpose of this study is to implement a knowledge-based BIM for explicitly representing the design knowledge, which is the basis of decision making for an architect while performing the massing calculation. In particular, the 3D knowledge relevant to a project can be provided and accumulated in the massing calculation by the BIM system; this facilitates an integral understanding. Consequently, the approximate result of massing calculation in 3D BIM environment, through both the knowledge-based BIM template and plug-in, can be swiftly provided to the architect. In addition, the architect can invent various alternatives, estimate resulting costs, and reuse the accumulated knowledge in future BIM design processes.

슬로싱 해석을 위한 CCUP 기반 시뮬레이션 기술 개발 (DEVELOPMENT OF A NUMERICAL SIMULATION METHOD FOR THE ANALYSIS OF SLOSHING PROBLEMS BASED ON CCUP SCHEME)

  • 박종천;황성철;정세민
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.1-10
    • /
    • 2011
  • A new computational program, which is based on the CIP/CCUP(Constraint Interpolation Profile/CIP Combined Unified Procedure) method, has been developed to numerically analyse sloshing phenomena dealt as multiphase-flow problems. For the convection terms of Navier-Stokes equations, the RCIP(Rational function CIP) method was adopted and the THINC-WLIC(Tangent of Hyperbola for Interface Capturing-Weighted Line Interface Calculation) method was used to capture the air/water interface. To validate the present numerical method, two-dimensional dam-breaking and sloshing problems in a rectangular tank were solved by the developed method in a stationary Cartesian grid system. In the case of sloshing problems, simulations by using a improved MPS(Moving Particle Simulation) method, which is named as PNU-MPS(Pusan National University-MPS), were also carried out. The computational results are compared with those of experiments and most of the comparisons are reasonably good.

Molecular Dynamics Free Energy Simulation Study to Rationalize the Relative Activities of PPAR δ Agonists

  • Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sangyoub
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.363-371
    • /
    • 2008
  • As a computational method for the discovery of the effective agonists for PPARd, we address the usefulness of molecular dynamics free energy (MDFE) simulation with explicit solvent in terms of the accuracy and the computing cost. For this purpose, we establish an efficient computational protocol of thermodynamic integration (TI) that is superior to free energy perturbation (FEP) method in parallel computing environment. Using this protocol, the relative binding affinities of GW501516 and its derivatives for PPARd are calculated. The accuracy of our protocol was evaluated in two steps. First, we devise a thermodynamic cycle to calculate the absolute and relative hydration free energies of test molecules. This allows a self-consistent check for the accuracy of the calculation protocol. Second, the calculated relative binding affinities of the selected ligands are compared with experimental IC50 values. The average deviation of the calculated binding free energies from the experimental results amounts at the most to 1 kcal/mol. The computational efficiency of current protocol is also assessed by comparing its execution times with those of the sequential version of the TI protocol. The results show that the calculation can be accelerated by 4 times when compared to the sequential run. Based on the calculations with the parallel computational protocol, a new potential agonist of GW501516 derivative is proposed.

대화형 Grain Stability Calculation에 관한 연구 (A Study on the Interactive Grain Stability Calculation)

  • 이순섭;이규옥;강원수;윤문태;성다경;이종철
    • 대한조선학회논문집
    • /
    • 제34권1호
    • /
    • pp.102-110
    • /
    • 1997
  • 현재 조선소에서는 grain stability 계산시에 선박계산 프로그램의 계산 결과치와 실제값 사이의 오차가 크므로 계산 프로그램을 많이 사용하지 않고 있으며, grain stability 계산에 필요한 모든 작업이 수작업을 통해 이루어 지고 있는 실정이다. 본 연구에서는 수작업을 통해 이루어지고 있는 grain stability 계산 작업을 전산화하여 계산작업시간의 단축 및 작업효율성을 극대화할 수 있는 대화형 grain stability 계산 프로그램 그 목적이 있다. 본 연구에서는 사용자의 편의와 대화식 압력 작업을 위해 그래픽 사용자 인터페이스(GUI:Graphical User Interface)를 구현하였고, 3차원 그래픽 라이브러리인 GLBAX를 사용하여 계산에 필요한 형상(girder, hold 형상등)정보들을 가시화하였다. 또한, 선박계산 프로그램과의 접속이 가능하도록 하였다.

  • PDF

평행 이동에 의한 스웹트 볼륨의 계산 방법 (Calculation of Translational Swept Volumes)

  • 백낙훈;신성용
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.28-34
    • /
    • 1997
  • A swept volume is a useful tool for solving various types of interference problems. Previous works have concentrated on sweeping an object along an arbitrary path, that results in complex algorithms. This paper concerns the volume swept by translating an object along a linear path. After analyzing the structure of the swept volume, we present an incremental algorithm for constructing a swept volume. Our algorithm takes O(n/sup 2/ *.alpha.(n)+T/sub c/) time where n is the number of vertices in the original object and T/sub c/ is time for handling face cycles.

  • PDF

대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구 (Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation)

  • 박인권;이종후;이장;구현근;권용한
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.