

Article Information

Manuscript Received June 30, 2022, Accepted September 16, 2022, Published online December 30, 2022

The authors are with KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-ro Yuseong-gu, Daejeon 34056, Republic of Korea.

Correspondence Author: Jintae Cho (jintae.cho@kepco.co.kr)

This paper is an open access article licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0
This paper, color print of one or more figures in this paper, and/or supplementary information are available at http://journal.kepco.co.kr.

159

RESEARCH

KEPCO Journal on Electric Power and Energy
p-ISSN 2465-8111, e-ISSN 2466-0124
Volume 8, Number 2, December 2022, pp. 159-179
DOI 10.18770/KEPCO.2022.08.02.159

Analysis of Distributed Computational Loads in Large-scale AC/DC Power

System using Real-Time EMT Simulation

대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구

In Kwon Park, Yi Zhong Hu, Yi Zhang, Hyun Keun Ku, Yong Han Kwon
박인권, 이종후, 이장, 구현근, 권용한

Abstract

Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility
grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections.
Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue
of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially
in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed
conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of
execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the
real-world clock.
When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put
on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the
worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the
necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much
smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of
the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However,
the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among
multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation
in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given
electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to
even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks
can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation
units, a reduction of the necessary size of the simulation time step, or both.

Keywords: Large network, EMT, RTDS, METIS

I. INTRODUCTION

In order to ensure the successful completion of technologically

complex projects such as a large scale HVDC project, many different

levels of studies become necessary. One such level is EMT (Electro-

Magnetic Transient) level, which allows more detailed view over

many different aspects of the system. Meanwhile, the usual way of

performing the necessary system study has been based on transient

stability analysis (TSA). The study is based on two fundamental

assumptions: the balanced three phase system in the study subject,

and the main focus of the study to be on the mechanical dynamics of

large-capacity three phase synchronous machines. The result of the

second assumption determines the time step of the necessary

simulation, in the range foretold by the system frequency. In the 60

Hz power system, usually the size of the time step is half of the period

determined by the frequency, which is 8.33mS. The transient stability

analysis (TSA) of system studies can be utilized in many different

levels of studies and can offer valuable insights regarding the

application of the special technology. However, those two fundamental

assumptions begin to reveal their limitation once the study

requirement goes over into a different ground. In particular, the

second assumption loses its ground once higher switching frequency

devices are employed as a vehicle of the special technology

application in transmission or distribution systems. The usual time

step size under the TSA type study indicates that the maximum

frequency of dynamics is the fundamental frequency of the system,

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

160

which is usually far less than the fastest dynamics expected from the

higher switching frequency systems. Thus, it becomes more likely to

see that vital part of the system transient response would be missed,

as long as such low sampling frequency simulation as the traditional

study is conducted. Therefore, these compelling reasons necessitate

that the application of the proper level of study method, an EMT level

study in such cases.

While the importance of the EMT level study is now widely

recognized, the method comes with its own set of limitations. One

such limitation is the amount of calculation. Once the scope of the

simulation becomes large, such as an extensive coverage of a

transmission level grid system, or the detail of the model begins to

climb up, such as the phase domain frequency dependent transmission

line models, the amount of computational burden begins to lay an

obstacle on the path to the achieve the desired study results by using

the technique. In the case of the larger extent of the network,

partitioning the network into the set of smaller subnetworks by using

the long enough transmission lines as the boundary has been known.

Such system partition, then, would allow each subsystem to be

assigned on its own computational unit such as a core of multicore

CPU. The transmission line interface between them guarantees the

integrity of the entire simulation by providing the necessary time

delays between them. As long as the size of the system is manageable,

such manual technique, which requires the manual identification of

such boundary lines, would work. However, once the size of the

system becomes more realistic, or goes beyond the possible extent of

the manual approach, the necessary partitioning work becomes

difficult. Furthermore, such manual system partitioning does not

guarantee that the system is partitioned in an optimal manner. For

instance, if a network is split into multiple subsystems, there is no

guarantee that the computational load of each system would become

well balanced. In the worst case, one subsystem, resulting from the

manual system partitioning, might heavily outweigh the rest in terms

of the computational burden. Consequently, the heaviest burden

would drive the size of the execution time, compromising the purpose

of the system partitioning.

The system partitioning is a long sought-after problem in graph

theory. Many versatile algorithms have been proposed and utilized in

various areas. One of them is an algorithm called METIS. The algorithm

was first proposed, then the implementation was made available

through the developer group’s website. Later on, mode variants came

into the collection of the implementation such as PyMETIS. The

algorithm and its implementation offer intuitive ways to provide the

necessary input data and interpret the outcome of the execution of

the algorithm. This paper introduces the application of the METIS

algorithms into the area of the electrical grid network partitioning.

The algorithm and its implementation are explained in the next

chapter of this paper. At the later portion of the chapter, how to check

the proper installation of the implementation package would be

presented. Then, the application of the algorithms to a widely used

model electrical grid model, IEEE 39 bus system, will follow. Two

different approaches are introduced there: the first one is to use a

single weighting factor per each node (or a virtual bus) and the

second one is using two different weighting factors. Subsequently, the

aptitude of the algorithm towards the given application would be

verified. Lastly, this paper finishes with a couple of concluding remarks.

II. METIS AND ITS INSTALLATION

A graph partitioning problem such as the one given in the

aforementioned chapter is a common problem in many areas. As the

computer software execution model moves from a single concentrated

execution to multiple execution units such as multicore system, the

partitioning problem comes under a new spotlight. The many cores

approach to the computational problem means the problem needs to

be partitioned in an adequate way to fit the nature of the given

computational machine, many cores connected by a communication

network. Therefore, the computational load assigning and balancing

problem becomes the network partitioning problem, with a set of

constraints such as minimizing the amount of communication

between cores.

One software package has been developed to tackle the problem.

The package started from a single partitioning algorithm named

‘multi-level k-way partitioning’, but it evolved to cover multiple

partitioning algorithms and began to see more applications in various

field. The package is ‘METIS’, developed by a computer science and

engineering lab at University of Minnesota[1]. The algorithm has

been progressing in terms of the development and diversification.

Some of its siblings are ParMETIS (Parallel Graph Partitioning and

Fill-reducing Matrix Ordering) and hMETIS (Hypergraph & Circuit

Partitioning). A Python variant can be also utilized, ‘PyMETIS’, if one

is interested in [2]. A website, ‘http://glaros.dtc.umn.edu/gkhome/metis/

metis’, has been the place for the information regarding the

development. The package can be downloaded from there as well.

Once it is downloaded, it can be built in many different environments

including Microsoft Windows and using Visual Studio.

The key idea of the seminal algorithm under the METIS package

is succinctly described in the reference[3].

The k-way graph partitioning problem is defined as follows:

Given a graph G = (V, E) with |V| = n, partition V into k subsets, V1,

V2, ... , Vk such that Vi ∩ Vj = ∅ for i ≠ j, |Vi| = n/k, and Ui Vi = V, and

the number of edges of E whose incident vertices belong to different

subsets is minimized. A k-way partitioning of V is commonly

represented by a partitioning vector P of length n, such that for every

vertex v ∈ V, P[v] is an integer between 1 and k, indicating the

partition to which vertex v belongs. Given a partitioning P, the

number of edges whose incident vertices belong to different

partitions is called the edge-cut of the partitioning. The following

figure, Fig. 1, shows the steps to run the partitioning algorithm.

The coarsening steps is to reduce the number of vertex and

corresponding edges, resulting in a smaller set of them, i.e., network.

Then, once the initial partition phase completes, each ‘coarsened’

Fig. 1. Multilevel k-way partitioning scheme[3]

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

161

element of the result gets the refinement. The refinement expands

the each ‘coarsened’ element of the previous steps.

What one would be more interested in is how to install the

package and use it, rather going to the technical background of the

package. Therefore, this chapter offers the explanation regarding the

installation of the package. This chapter concludes with a simple

example and its result obtained from the METIS, consequently the

proper installation and operation of the package is verified. The very

first step is downloading the package from the aforementioned

website. It is in the form of the source code collection. Therefore, one

needs to select the development environment where the source code

Fig. 2. pacman configuration modification

Fig. 3. A simple graph – given in METIS manual chapter4

Fig. 4. METIS execution example

Fig. 5. Result of the simple graph partitioning

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

162

files of the package, downloaded from the website, can be compiled,

linked and become a set of executables, which would be able to run

on the selected environment. In the experiment reported in this

document, a well-known unix-like environment, named MSYS2, was

selected. One reason behind of the selection was that the original

Visual Studio workspace included in the package (made by Visual

Studio version 2010) did not work. An instruction file included in the

package, ‘Buid.txt’, presents how to build the package by using gcc-

tool chain in a unix-like environment such as the one chosen, MSYS2.

During the installation of the pre-requisite of the project, an

error might occur. It might be related with an invalid security key,

which would be related to a software package installation. There

would be many different ways to overcome the issue, but in the

process reported in this document, a recommendation (or instruction)

given in this link(https://github.com/msys2/MSYS2-packages/issues/

2343) was taken. It introduces a level of compromise in terms of the

integrity of the software package installation by using the MSYS2

package manager (‘pacman’), but it was taken due to its relative

simplicity. The lines marked by a red box in the following figure, Fig.

2, shows the necessary modification for the purpose of disabling the

security key ring checking of the ‘pacman’ package manager.

Unlike many people’s conception regarding the MSYS2 environment,

it does not come with the usual unix system compiler/linker toolchain,

namely GCC. Therefore, the steps explained in this link (https://www.

devdungeon.com/content/install-gcc-compiler-windows-msys2-cc)

was followed to complete the installation of the compiler-linker toolchain

in the given environment.

After the completion of the installation, a simple graph given in

the fig. 2(a) of the manual chapter 4 was tested. The graph given in

the figure is shown the figure below, Fig. 3. The figure also shows the

input file which represents the graph in the style of the adjacent list.

One needs to pay attention that the node (or vertices) index is implicit

in this graph representation. In other words, the line number is used

as the vertex index, instead of showing the index in an explicit way.

For example, the second line of the file presents the connectivity

status of the vertex 1. One can easily see it by comparing the line (‘5

3 2’) with the graphical representation of the graph in the upper

portion of the figure.

The MSYS2 screen capture image shown below, Fig. 3, presents

the output of the METIS execution, taking in the graph file presented

in the lower portion of the figure, Fig. 2, as an input.

The input adjacent list file, presented in the bottom part of Fig. 3,

was put as the input file, ‘Fig2.txt’. Then the METIS executable was

invoked with two command arguments. The first one is the name the

input file (‘Fig2.txt’). The second argument is the number of

partitions. In the example presented in Fig. 4, ‘2’ was give as the

second argument, telling the METIS program to cut the input graph

into two partitions. The result of the graph partition is given by a

simple text file, ‘Fig2.txt.part.2’. The first portion of this file name,

‘Fig2.txt’, is from the input file name and the rest of the name indicates

that the graph was split into 2 parts, as given as a command line

option when the program was executed. The following figure, Fig. 5,

presents the result. Again, the vertex index is implicit. In order to

clearly show the implicit index, the line number was also shown in

the figure.

III. AN ELECTRIC GRID NETWORK PARTITIONING

The graph partitioning problem is to partition the vertices of a

graph in p roughly equal partitions such that the number of edges

connecting vertices in different partitions is minimized. An

interesting application of the graph partitioning algorithm is the

subsystem identification and splitting of an electrical utility grid

network. The usual extent of the electrical grid can reach up to a wide

coverage, often up to the entire territory of a country. While such

extent is a given condition for any necessary work to be done,

handling the entire grid at once and as a whole becomes a daunting

task due to its size and complexity. Therefore, how to split a grid with

an extensive size into a number of sub-units which would come under

the manageable size limit has been an intriguing study topic, which

drew attention from many researchers.

An exemplary system was selected and used in the study

reported in this document. In other words, a realistic system was

selected and posed as the problem, to be solved and reported in this

Fig. 6. Single-line diagram for the IEEE 39 bus power system[4]

https://www/

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

163

document. The system is usually called as IEEE 39 bus system,

because the system has 39 buses (or nodes, following notation from

graph theories). The system represents for part of the north-eastern

electrical grid at the United States. Part of the grid network

represents system equivalence, meaning that those parts are

representing much larger portion of the network. Those system

equivalences are the representations of the neighboring systems,

connected to the network which is depicted in detail. The following

figure, Fig. 6, presents the example system in a graphical manner

The partitioning of a grid network, such as the one presented in

Fig. 6, would utilize the characteristics of the electrical network. In

particular, the following two points determines the size of a partition

and its composition. The first point is the number of buses (or nodes)

in each partition. One possible objective of partitioning is to assign

each group into the sub-divisions in a utility company. For example, a

utility company can establish the subdivisions according to the

geographical boundary. However, each sub-division would become in

charge of the maintenance of the electrical grid in its territory.

Consequently, the partitioning of the network and its corresponding

assignment of the responsibility needs to be balanced, in order to

maintain a certain level of fairness in the task assignment to each sub-

division. The second point is the electrical distance. Frequently, the

electrical distance, usually measured as the magnitude of impedance,

would corresponds to the geographical distance. Therefore, it would

be a reasonable measure, offering the information of the configuration

of the electrical grid network in geography. The information, usually

called as line information, of the example grid is given by the

following table, Table 1.

Once the necessary data regarding the topology of the network

is ready, the next step is to screen the branch data to identify the

candidates of the cut-sets. In other words, the electrical length of all

the branches in the network need to be calculated, then each length

needs to be compared to a given criterion(e.g., a electromagnetic

travel time = sqrt(L*C)) in order to identify the branches which are

long enough to be used as the border between partitions. First, a

transformer branch cannot become the subject of split, or connecting

edge between two partitions. Second, a shorter branch cannot

become the subject of split either. ‘Short’ means the impedance of the

branch is less than a certain value. The value is determined by the

minimum travel time (or propagation delay in Electromagnetic

terms). All of those branches in the given data, Table 1, were checked.

The following table, Table 2, shows the result. Two tags, ‘TRF’ and

‘UTRF’, shows the branches which belong to the first category,

transformer branch. Another tag, ‘RL’ designates the branches too

short to be cut, belonging to the second category.

The following figure, Fig. 7, presents the information given in the

Table 2 in a graphical manner. In the figure, Fig. 7, the green boxes

TABLE 2
Branch data screening

TABLE 1
IEEE-39 bus system branch data[4]

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

164

show the location of the first condition, transformers, while the red

boxes show the location of the second criterion, the short branches.

The following table, Table 3, shows the METIS input file, reflecting

the information presented in the Table 2 and the Fig. 7.

The input file is saved as ‘METIS_input2.txt’. Then, the number of

the partition is decided. In the case of this example, the number was

decided as 4. The next step is to run METIS program with the input

file and the desired number of the partitions. The necessary

command is ‘gmetis -ptype=rb METIS_input2.txt 4’. This command,

once given in the MSYS2 command, shell will execute the METIS, with

the given number of partitions. The result is written in a text time,

with the name of <input text tile>.part.#. ‘#’ signifies the total

number of partitions given as a part of the command. Here is a screen

capture image, presenting an example of executing the METIS and the

execution result.

The output text file is given in the following table, Table 4.

The node index is implicit, meaning that the file only shows the

information of the partition where the vertex (i.e., node) belongs to.

For instance, the very first line shows that vertex 1 (assuming the

index starts from 1) belongs to partition 0 (assuming the index starts

from 0). The output file can be re-interpreted to assign the partition

number to the vertex or node index of the electrical network. The

result of the re-interpretation is given in the following table, Table 5.

The partition result is displayed upon the graphical represent-

tation of the electrical network, in the following figure, Fig. 9.

The next attempt is adding more weight to each vertex of the

network and use it as additional criterion in the partitioning. When

METIS runs the network and tries to partition, multiple goals can be

given as the guideline of the partitioning. The most fundamental goals

are these: the first was the balancing, meaning that the sum of

weights of each partition needs to be balanced. The next is the

minimization of the number of edge-cut. In other words, the

algorithm tries to cut as few branches as possible. In this attempt, an

extra goal was set. The goal was given as an additional weighting

factor of the node. The extra weight is made up by these factors. A

generator (an entity represented by a circle and a number within it,

shown in Fig. 6) would impose a certain weight. A transformer would

add its own weight and each terminal of the edge-cut would add its

own. Probably handing the more involved condition and producing

the necessary METIS input file, according to the given condition

would be difficult, if one tries to accomplish it in a manual way.

Therefore, a MATLAB M script was written to automate the necessary

steps to read the data files and produce the METIS input file. The M

script was presented in Appendix A. The necessary input data files for

the execution of the M script file were presented in Appendix B. Those

data files are representing the system information of the given

example, IEEE 39 bus system.

The table above, Table 6, presents the METIS input file for the

second attempt, with multiple weighting factors upon each node. The

Fig. 7. Result of branch data screening

TABLE 3
IEEE-39 bus system METIS input file

25 31 011
1 2 1 25 1
1 1 1 3 1 20 1
1 2 1 4 1 14 1
1 3 1 5 1 10 1
2 4 1 7 1 6 1 9 1
1 5 1 7 1
1 5 1 6 1 8 1
1 7 1 25 1
4 5 1 10 1
1 4 1 9 1 11 1
1 10 1 12 1
1 11 1 13 1 15 1 16 1 19 1
1 12 1 14 1 22 1
1 3 1 13 1
2 12 1
1 12 1 17 1
1 16 1 18 1
1 17 1 19 1
1 12 1 18 1
1 2 1 21 1
1 20 1 22 1 23 1 24 1
1 13 1 21 1
1 21 1 24 1
1 21 1 23 1
1 1 1 8 1

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

165

file was generated from the MATLAB M script presented in the

Appendix A and those input files presented in the Appendix B. The

first line tells the information to the METIS program. The second last

number of the first line, 011, tells METIS that the input file has the

weight on both the node (i.e., vertex) and branch (i.e., edge). The last

number of the first line, ‘2’, tells to the METIS that the weight value

given to each node is 2. The second line of the file shows an example.

The node index 1 (assuming the starting index is 1, as the same as the

previous attempt) has two weighting factors, 1 and 0. Then, the rest

of the parameters on the line show the branch adjacent list with the

weighting of each branch. In other words, ‘2 1’ presents a branch from

node 1 to node 2, with the weighting of 1.

In order to utilize the partitioning results from METIS, the result

must be re-interpreted. The re-interpretation process must take care

of the bus renaming (from internal bus indexing, through hidden bus

indexing, to the final original indexing) and the allocation of the

partition numbers for both merged buses and the generator buses,

Fig. 8. METIS execution – IEEE 39 bus example

TABLE 4

IEEE-39 bus system system partitioning result

0
1
1
1
0
0
0
0
1
1
3
3
2
2
3
3
3
3
3
2
2
2
2
2
0

TABLE 5

Partitioning result – re-interpreted

1 1
2 2
3 2
4 2
5 1
6 1
7 1
8 1
9 1
10 2
11 2
12 2
13 2
14 2
15 4
16 4
17 3
18 3
19 4
20 4
21 4
22 4
23 4
24 4
25 3
26 3
27 3
28 3
29 3
39 1
30 2
31 1
32 2
33 4
34 4
35 4
36 4
37 3
38 3

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

166

which became merged with its high voltage side bus across its unit

transformer. Another MATLAB M script was written to automate the

necessary steps. The code was presented in Appendix C. The

following table, Table 7, presents the result of the re-interpretation.

The partition result is displayed upon the graphical represent-

tation of the electrical network, in the following figure, Fig. 10.

This paper presented a solution to an electrical grid network

partitioning problem, using a general graph partitioning algorithm

named METIS. The algorithm, METIS, was selected and examined to

see if it could be applied for the solution of a given problem. The

procedure to acquire the METIS package as well as the procedure for

Fig. 9. IEEE 39 bus system partitioning result

TABLE 6

IEEE 39 bus system METIS input file-2

25 31 011 2
1 0 2 1 25 1

1 20 1 1 3 1 20 1
1 0 2 1 4 1 14 1
1 0 3 1 5 1 10 1

2 20 4 1 7 1 6 1 9 1
1 0 5 1 7 1
1 0 5 1 6 1 8 1

1 0 7 1 25 1
4 40 5 1 10 1
1 0 4 1 9 1 11 1

1 0 10 1 12 1
1 0 11 1 13 1 15 1 16 1 19 1
1 0 12 1 14 1 22 1

1 0 3 1 13 1
2 50 12 1
1 0 12 1 17 1

1 20 16 1 18 1
1 20 17 1 19 1
1 0 12 1 18 1

1 20 2 1 21 1
1 0 20 1 22 1 23 1 24 1
1 0 13 1 21 1

1 0 21 1 24 1
1 20 21 1 23 1
1 20 1 1 8 1

TABLE 7

Re-interpreted partitioning result

1 4

2 4

3 2

4 3

5 3

6 3

7 4

8 4

9 4

10 3

11 3

12 3

13 3

14 3

15 2

16 2

17 2

18 2

19 2

20 2

21 1

22 1

23 1

24 1

25 4

26 1

27 2

28 1

29 1

39 4

30 4

31 3

32 3

33 2

34 2

35 1

36 1

37 4

38 1

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

167

the installation was described. The completeness of the installation

was verified by using a simple test case, which was given as part of

the METIS manual. Then the algorithm was applied to the given

problem, partitioning a practical electrical utility grid with an

adequate level of complexity. The tests successfully demonstrated

that the METIS algorithm could solve the given problem. The test

results presented in this paper show that the given graph (the electric

utility grid network) can be split according to a pre-determined

objective, such as the different weighting factor. The partitioning

result would have many different applications. One such application

is to use the partitioning result as a guideline to optimize the

computation loads in each computational unit with minimum

communications.

References

[1] Karypis Lab. "METIS - Serial Graph Partitioning and Fill-reducing

Matrix Ordering." (accessed.)

[2] "PyMetis: A Python Wrapper for METIS." https://github.com/inducer/

pymetis (accessed.)

[3] G. Karypis and V. Kumar, "Multilevelk-way Partitioning Scheme for

Irregular Graphs," Journal of Parallel and Distributed Computing, vol.

48, no. 1, pp. 96-129, 1998/01/10/ 1998, doi: https://doi.org/10.1006/

jpdc.1997.1404.

[4] V. Dinavahi and N. Lin, Parallel Dynamic and Transient Simulation of

Large-Scale Power Systems: A High Performance Computing Solution.

Cham: Springer International Publishing AG, 2021, https://doi.org/

10.1007/978-3-030-86782-9

Fig. 10. IEEE 39 bus system partitioning result-2

https://github.com/inducer/
https://doi.org/

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

168

APPENDIX I

MATLAB M script to produce a METIS input file

clc;
clear all;

BUS_NUMBER = 30; % reduced
BRANCH_NUMBER = 37;

vertex = 1:BUS_NUMBER;
weight = ones(1,BUS_NUMBER);

branch = zeros(BRANCH_NUMBER,2);

% read in branch info

i=0;
j=0;
cross=0;
m=0;
n=0;

k=1;

real_hid = zeros(BUS_NUMBER,2);

% read the mapping between hid and real

FILE_NAME = '.¥InputFiles¥hid_real_mapping.txt';

fileID = fopen(FILE_NAME, 'r');
real_bus_number =[];
hid_bus_number =[];

while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (tline(1) == '#') || (strlength(tline) == 0)
 continue;
 end

 temp_A = sscanf(tline, '%d');
 real_hid(k, :) = [temp_A(2), temp_A(1)];
 hid_bus_number(k) = temp_A(1);
 real_bus_number(k) = temp_A(2);
 k = k + 1;

end

fclose(fileID);

real2hid_Map = containers.Map(real_bus_number, hid_bus_number);
hid2real_Map = containers.Map(hid_bus_number, real_bus_number);

cross_count = 0;

FILE_NAME = '.¥InputFiles¥reduced_system_topology.txt';
fileID = fopen(FILE_NAME, 'r');

k=1;

while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (tline(1) == '#') || (strlength(tline) == 0)
 continue;
 end

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

169

 temp_A = sscanf(tline, '%d');
 i = real2hid_Map(temp_A(1));
 j = real2hid_Map(temp_A(2));
 cross = temp_A(3);

 % ensure i<j
 if (i>j)
 m=i;
 i=j;
 j=m;
 end

 % merge
 if (cross == 0)
 if(weight(i) == 0)
 i = vertex(i);
 end
 if(weight(j) == 0)
 j = vertex(j);
 end

 % already merged
 if(i==j)
 continue;
 end

 if (i~=vertex(i) || j ~=vertex(j) || weight(i) ==0 || weight(j)==0)
 disp('Bug 1');
 return;
 end

 % merge vertex j to i
 if(i < j)
 for (m = 1:BUS_NUMBER)
 if (vertex(m) == j)
 vertex(m) = i;
 end
 end
 weight(i) = weight(i)+weight(j);
 weight(j) = 0;
 % merge vertex i to j
 else
 for (m = 1:BUS_NUMBER)
 if (vertex(m) == i)
 vertex(m) = j;
 end
 end
 weight(j) = weight(i)+weight(j);
 weight(i) = 0;
 end
 else % cross line
 cross_count = cross_count+1;
 branch(cross_count, :) = [i j];
 end

end

% weight(i): 본 모선에 머지된 모선 갯수 + 1, 피머지된 모선은 0

fclose(fileID);

% update the branches (cross lines) after vertex merge

branch2 = zeros(cross_count,2);
cross_count2 = 0;
for i = 1: cross_count
 m = vertex((branch(i,1)));
 n = vertex((branch(i,2)));
 if (m == n)
 continue; % the nodes on the sides of this crossline have merged
 end

 cross_count2 = cross_count2 +1;

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

170

 if(m<n)
 branch2(cross_count2,:)= [m, n];
 else
 branch2(cross_count2,:)= [n, m];
 end
end

% create the new vertex and the map between old and new
vertex_new_count = 0;
check=0;

for i = 1: BUS_NUMBER

 if (weight(i) ~= 0)
 check = check + weight(i);
 vertex_new_count = vertex_new_count+1;
 if (i ~= vertex(i))
 disp('Bug 3');
 return;
 end

 vertex_new(vertex_new_count) = i;
 vertex_new_weight(vertex_new_count) = weight(i);

 for (m = 1:BUS_NUMBER)
 if (vertex(m) == i)

 % map_old_to_new: 히든모선번호와 프로그램내 내부모선번호간 맵

 map_old_to_new(m) = vertex_new_count;
 end
 end

 end
end

if(check ~= BUS_NUMBER)
 disp('Bug 2');
 return;
end

% update branch2 to branch3, with vertex_new
branch3 = zeros(cross_count2,2);
cross_count3 = 0;
for i = 1: cross_count2
 m = map_old_to_new(branch2(i,1));
 n = map_old_to_new(branch2(i,2));

 if(m ==0 || n == 0)
 disp('Bug 4');
 return;
 end
 if (m == n)
 continue; % the nodes on the sides of this crossline have merged
 end

 cross_count3 = cross_count3 +1;

 if(m<n)
 branch3(cross_count3,:)= [m, n];
 else
 branch3(cross_count3,:)= [n, m];
 end
end

% for the easy use, sort the branch3 (Bubble)
temp_branch=[0, 0];
for i = cross_count3:-1:2
 for j = 1:i-1
 % compare branch3(j,1) and branch3(j+1,1)
 if(branch3(j,1)>branch3(j+1,1))
 temp_branch = branch3(j,:);
 branch3(j,:) = branch3(j+1,:);
 branch3(j+1,:) = temp_branch;

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

171

 end
 end
end

% 두모선간 복수의 브랜치가 있는지 확인

branch_new =zeros(cross_count3, 2);
branch_new_count = 0;
branch_new_weight = zeros(1,cross_count3);

branch_new_count =1;
branch_new(1,:)=branch3(1,:);
branch_new_weight(1)=1;

for i= 2:cross_count3
 % make sure branch3(i,:) is different with branches already in
 % branch_new
 flag=0;
 for (j=1:i-1)
 if(branch3(i,1) == branch_new(j,1) && branch3(i,2) == branch_new(j,2))
 flag = 1;
 branch_new_weight(j) = branch_new_weight(j)+1;
 end
 end

 if(flag ==0)
 branch_new_count = branch_new_count+1;
 branch_new(branch_new_count,:) = branch3(i,:);
 branch_new_weight(branch_new_count) = 1;
 end
end

check=0;

for i = 1:branch_new_count
 check = check+branch_new_weight(i);
end
if check~=cross_count3
 disp('Bug 5');
 return;
end

disp('reduced system topology process finished');

% The second weight for vertex_new (mimi systems) --> load unit
% for each vertex_new (mini systems), we count
% transformer
% generator
% t-line ?

vertex_new_weight2 = zeros(1, vertex_new_count);

TRANSFORMER_LOAD = 10;
GENERATOR_LOAD = 20;
TLINE_TERMINAL_LOAD = 5;

% read the transformers info
% real bus number in this file
FILE_NAME = '.¥InputFiles¥transformers.txt';
fileID = fopen(FILE_NAME, 'r');

while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (strlength(tline) == 0) || (tline(1) == '#')
 continue;
 end

 temp_A = sscanf(tline, '%d');
 m = real2hid_Map(temp_A(1));

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

172

 n = real2hid_Map(temp_A(2));

 i = map_old_to_new(m);
 j = map_old_to_new(n);

 if (i ~=j)
 disp('Bug 8');
 return;
 end

 vertex_new_weight2(i) = vertex_new_weight2(i) + TRANSFORMER_LOAD;

end

fclose(fileID);

% read the generators info
% real bus number in this file
FILE_NAME = '.¥InputFiles¥generators.txt';
fileID = fopen(FILE_NAME, 'r');
merged_generators =[];
merged_generator_count=0;

while ~feof(fileID)
 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (strlength(tline) == 0) || (tline(1) == '#')
 continue;
 end

 temp_A = sscanf(tline, '%d');
 m = temp_A(1);
 n = temp_A(2);

 if (n~=0)
 merged_generator_count = merged_generator_count+1; % these generators have terminal transformers and been
merged in reduce syste
 merged_generators(merged_generator_count,:) = [m,n];

 kk = real2hid_Map(n);
 i = map_old_to_new(kk);
 vertex_new_weight2(i) = vertex_new_weight2(i) + GENERATOR_LOAD;
 else % n==0
 kk = real2hid_Map(m);
 i = map_old_to_new(kk);
 vertex_new_weight2(i) = vertex_new_weight2(i) + GENERATOR_LOAD;
 end

end

fclose(fileID);

% read the t-line info
FILE_NAME = '.¥InputFiles¥reduced_system_topology.txt';
fileID = fopen(FILE_NAME, 'r');

% ??
while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (strlength(tline) == 0) || (tline(1) == '#')
 continue;
 end

 temp_A = sscanf(tline, '%d');

 m = (real2hid_Map(temp_A(1)));
 n = (real2hid_Map(temp_A(2)));

 cross = temp_A(3);

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

173

 if (cross == 1) % this is a T-line

 i = map_old_to_new(m);
 %?
 % vertex_new_weight2(i) = vertex_new_weight2(i) + TLINE_TERMINAL_LOAD;
 j = map_old_to_new(n);
 %?
 % vertex_new_weight2(j) = vertex_new_weight2(j) + TLINE_TERMINAL_LOAD;

 end
end

fclose(fileID);

% write the input file for METIS

FILE_NAME = 'METIS_input.txt';
fileID = fopen(FILE_NAME, 'w');
fprintf(fileID, '%d %d 011 2¥n', vertex_new_count,branch_new_count);

for i=1:vertex_new_count

 % every vertex deserves one line
 % first are the vertex weights
 fprintf(fileID, '%d %d ', vertex_new_weight(i), vertex_new_weight2(i));
 % each branch counted for both connected vertexs
 for j=1:branch_new_count
 if (branch_new(j,1) == i)
 fprintf(fileID, '%d %d ', branch_new(j,2), branch_new_weight(j));
 end

 if (branch_new(j,2) == i)
 fprintf(fileID, '%d %d ', branch_new(j,1), branch_new_weight(j));
 end
 end
 fprintf(fileID, '¥n', vertex_new_weight(i));

end

fclose(fileID);

disp('METIS input file written');

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

174

APPENDIX II

IEEE 39 bus system data files(‘hid_real_mapping.txt’)

from split.txt
hid real

 1 1

 2 2
 3 3

 4 4

 5 5
 6 6

 7 7

 8 8
 9 9

 10 10

 11 11
 12 12

 13 13

 14 14
 15 15

 16 16

 17 17
 18 18

 19 19

 20 20
 21 21

 22 22

 23 23
 24 24

 25 25

 26 26
 27 27

 28 28

 29 29
 30 39

IEEE 39 bus system data files(‘reduced_system_topology.txt’)

from split.txt
from to 1-TRL, 0-RL

 1 2 1
 1 39 1

 2 3 1

 2 25 1
 3 4 1

 3 18 1

 4 5 1
 4 14 1

 5 6 0

 5 8 1
 6 7 1

 6 11 1

 7 8 1
 8 9 1

 9 39 1

 10 11 0
 10 13 0

 13 14 1

 14 15 1
 15 16 1

 16 17 1

 16 19 1
 16 21 1

 16 24 1

 17 18 1
 17 27 1

 21 22 1

 22 23 1
 23 24 1

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

175

 25 26 1

 26 27 1
 26 28 1

 26 29 1

 28 29 1
 12 11 0

 12 13 0

 19 20 0

IEEE 39 bus system data files(‘transformers.txt’)

real bus number in this file

 12 11 2
 12 13 2

 19 20 2

IEEE 39 bus system data files(‘generator.txt’)

real bus number in this file

genbus hvbus
 30 2

 31 6

 32 10
 33 19

 34 20

 35 22
 36 23

 37 25

 38 29
 39 0

APPENDIX III

MATLAB M script to postprocess a METIS output file

clc;
clear all;

BUS_NUMBER = 30; % reduced
BRANCH_NUMBER = 37;
vertex = 1:BUS_NUMBER;
weight = ones(1,BUS_NUMBER);
branch = zeros(BRANCH_NUMBER,2);

% read in branch info
cross=0;
k=1;

real_hid = zeros(BUS_NUMBER,2);

% read the mapping between hid and real

FILE_NAME = '.¥InputFiles¥hid_real_mapping.txt';

fileID = fopen(FILE_NAME, 'r');
real_bus_number =[];
hid_bus_number =[];

while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

176

 if (tline(1) == '#') || (strlength(tline) == 0)
 continue;
 end

 temp_A = sscanf(tline, '%d');
 real_hid(k, :) = [temp_A(2), temp_A(1)];
 hid_bus_number(k) = temp_A(1);
 real_bus_number(k) = temp_A(2);
 k = k + 1;

end

fclose(fileID);

real2hid_Map = containers.Map(real_bus_number, hid_bus_number);
hid2real_Map = containers.Map(hid_bus_number, real_bus_number);

cross_count = 0;

FILE_NAME = '.¥InputFiles¥reduced_system_topology.txt';
fileID = fopen(FILE_NAME, 'r');

k=1;

while ~feof(fileID)

 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (tline(1) == '#') || (strlength(tline) == 0)
 continue;
 end

 temp_A = sscanf(tline, '%d');
 i = real2hid_Map(temp_A(1));
 j = real2hid_Map(temp_A(2));
 cross = temp_A(3);

 % ensure i<j
 if (i>j)
 m=i;
 i=j;
 j=m;
 end

 % merge
 if (cross == 0)
 if(weight(i) == 0)
 i = vertex(i);
 end
 if(weight(j) == 0)
 j = vertex(j);
 end

 % already merged
 if(i==j)
 continue;
 end

 if (i~=vertex(i) || j ~=vertex(j) || weight(i) ==0 || weight(j)==0)
 disp('Bug 1');
 return;
 end

 % merge vertex j to i
 if(i < j)
 for (m = 1:BUS_NUMBER)
 if (vertex(m) == j)
 vertex(m) = i;
 end
 end
 weight(i) = weight(i)+weight(j);

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

177

 weight(j) = 0;
 % merge vertex i to j
 else
 for (m = 1:BUS_NUMBER)
 if (vertex(m) == i)
 vertex(m) = j;
 end
 end
 weight(j) = weight(i)+weight(j);
 weight(i) = 0;
 end
 else % cross line
 cross_count = cross_count+1;
 branch(cross_count, :) = [i j];
 end

end

% weight(i): 본 모선에 머지된 모선 갯수 + 1, 피머지된 모선은 0

fclose(fileID);

% update the branches (cross lines) after vertex merge

branch2 = zeros(cross_count,2);
cross_count2 = 0;
for i = 1: cross_count
 m = vertex((branch(i,1)));
 n = vertex((branch(i,2)));
 if (m == n)
 continue; % the nodes on the sides of this crossline have merged
 end

 cross_count2 = cross_count2 +1;

 if(m<n)
 branch2(cross_count2,:)= [m, n];
 else
 branch2(cross_count2,:)= [n, m];
 end
end

% create the new vertex and the map between old and new
vertex_new_count = 0;
check=0;

for i = 1: BUS_NUMBER

 if (weight(i) ~= 0)
 check = check + weight(i);
 vertex_new_count = vertex_new_count+1;
 if (i ~= vertex(i))
 disp('Bug 3');
 return;
 end

 vertex_new(vertex_new_count) = i;
 vertex_new_weight(vertex_new_count) = weight(i);

 for (m = 1:BUS_NUMBER)
 if (vertex(m) == i)

 % map_old_to_new: 히든모선번호와 프로그램내 내부모선번호간 맵

 map_old_to_new(m) = vertex_new_count;
 end
 end

 end
end

% read the generators info
% real bus number in this file
FILE_NAME = '.¥InputFiles¥generators.txt';

In Kwon Park, et al., Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation

178

fileID = fopen(FILE_NAME, 'r');
merged_generators =[];
merged_generator_count=0;

while ~feof(fileID)
 tline = fgetl(fileID);
 tline = strtrim(tline);

 if (strlength(tline) == 0) || (tline(1) == '#')
 continue;
 end

 temp_A = sscanf(tline, '%d');
 m = temp_A(1);
 n = temp_A(2);

 if (n~=0)

 % these generators have terminal transformers and been merged in
 % reduce system
 merged_generator_count = merged_generator_count+1;
 merged_generators(merged_generator_count,:) = [m,n];

 end

end

fclose(fileID);

%%%%

[file,path] = uigetfile('*.*');

if isequal(file,0)
 disp('User selected Cancel');
else
 disp(['Selected file', fullfile(path,file)]);
end

FILE_NAME = fullfile(path,file);
fileID = fopen(FILE_NAME, 'r');
vertex_new_partiton =[];

for k = 1: vertex_new_count
 tline = fgetl(fileID);
 temp_A = sscanf(tline, '%d');
 vertex_new_partiton(k) = temp_A + 1; % rack start for 1
end
fclose(fileID);

% write the 'sub-alloc' file
FILE_NAME = 'sub_alloc';
fileID = fopen(FILE_NAME, 'w');

for k = 1: BUS_NUMBER

 % k: 히든 모선번호

 m = map_old_to_new (k);

 if (m ==0)
 disp('Bug 6');
 return;
 end

 n = vertex_new_partiton(m);
 o = hid2real_Map(k);

 fprintf(fileID, '%d %d ¥n', o, n);

end

KEPCO Journal on Electric Power and Energy, Volume 8, Number 2, December 2022, pp. 159-179, DOI 10.18770/KEPCO.2022.08.02.159

179

fclose(fileID);

% extra part
% generators -- > terminal transformer been merged
% slack generator (i.e., a generator directly connected to HV bus or no
% UTRF is excluded

FILE_NAME = 'sub_alloc';
fileID = fopen(FILE_NAME, 'a+');

for k = 1: merged_generator_count

 % merged_generators 의 모선 인덱스는 리얼

 i = merged_generators(k,1);
 m = merged_generators(k,2);

 for kk=1:BUS_NUMBER
 if (real_bus_number(kk) == m)
 break;
 end
 end

 kk = real2hid_Map(m);

 if (kk ==0)
 disp('Bug 7')';
 return;
 end

 n = vertex_new_partiton(map_old_to_new(kk));

 fprintf(fileID, '%d %d ¥n', i, n);
end

fclose(fileID);

disp('sub_alloc file written');

