• Title/Summary/Keyword: compressive toughness index

Search Result 16, Processing Time 0.021 seconds

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Compressive and Flexural Properties of Hemp Fiber Reinforced Concrete

  • Li, Zhijian;Wang, Lijing;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.187-197
    • /
    • 2004
  • The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

Estimation of The Basic Properties of Two-Lift Concrete Pavement to Apply Korea Condition (이층 포설 콘크리트 포장의 국내 적용을 위한 강섬유 보강 콘크리트 기초 물성평가)

  • Won, Hong-Sang;Ryu, Sung-Woo;Hong, Jong-Yong;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • This study had a focus on investigating technical validity of Two-Lift Concrete Pavements which had never been constructed in Korea in order to olve the problem of existing concrete pavements. This study found out the application of Steel Fiber Reinforced Concrete (SFRC) which was one of ew techniques. Also, optimal steel fiber contents and pavement thickness were determined. This study also measured compressive strengths, lexural strengths, toughness indexes, tensile strengths and fatigue strengths to estimate the performance of SFRC of according to results of aboratory experiments, slumps and air contents of concrete specimens the standards satisfied and compressive strengths to open traffic. At bending ests, Toughness Index of SFRC increased but flexural strength didn’'t increase as compared with non-steel fiber concretes. And, energy absorption of SFRC was very good and SFRC showed improvement in freezing and thawing resistances. To complete this research, we will evaluate the pplication methods and performance of SFRC at field section.

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Yo-Seb;Jun, Jin;Kim, Wha-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.470-476
    • /
    • 2016
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber, however, yet remain to be done. The purpose of this experimental research is to evaluate the workability and mechanical properties of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) and polyamide fiber(PAF) were made according to their total volume fraction of 0.5 % for water-binder ratio of 33 %, and then the mechanical properties such as the compressive strength, direct tensile strength, flexural strength, and flexural toughness of those were estimated. It was observed from the test results that the compressive strength was slightly decreased with increasing ASF and decreasing PAF and the effect of fiber combination on the flexural strength was not much but the flexural toughness was relatively largely increased with decreasing ASF and increasing PAF.

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete (골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동)

  • Ahn, Kyung-Lim;Jang, Seok-Joon;Jang, Sang-Hyeok;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.229-236
    • /
    • 2015
  • This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber (폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성)

  • Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.