• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.031 seconds

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Evaluation of shear-key misalignment in grouted connections for offshore wind tower under axial loading

  • Seungyeon Lee;Seunghoon Seo;Seungjun Kim;Chulsang Yoo;Goangseup Zi
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.509-518
    • /
    • 2024
  • In this study, we investigated the effect of shear-key placement on the performance of grouted connections in offshore wind-turbine structures. Considering the challenges of height control during installation, we designed and analyzed three grouted connection configurations. We compared the crack patterns and strain distribution in the shear keys under axial loading. The results indicate that the misalignment of shear keys significantly influences the ultimate load capacity of grouted connections. Notably, when the shear keys were positioned facing each other, the ultimate load decreased by approximately 15%, accompanied by the propagation of irregular cracks in the upper shear keys. Furthermore, the model with 50% misalignment in the shear-key placement exhibited the highest ultimate strength, indicating a more efficient load resistance than the reference model. This indicates that tensile-load-induced cracking and the formation of compressive struts in opposite directions significantly affect the structural integrity of grouted connections. These results demonstrate the importance of considering buckling effects in the design of grouted connections, particularly given the thin and slender nature of the inner sleeves. This study provides valuable insights into the design and analysis of offshore wind-turbine structures, highlighting the need for refined design formulas that account for shifts in shear-key placement and their structural implications.

Condition assessment of aged underground water tanks-Case study

  • Zafer Sakka;Ali Saleh;Thamer Al-Yaqoub;Hasan Karam;Shaikha AlSanad;Jamal Al-Qazweeni;Mohammad Mosawi;Husain Al-Baghli
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.493-504
    • /
    • 2024
  • This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate (니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석)

  • C. Kim;S.J. Bae;H. Lee;H.J. Bong;K.S. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

Temperature and humidity characteristics of waste glass aggregate-based vegetation blocks using smart environmental sensor (스마트 환경 센서를 활용한 폐유리 골재 기반 식생블록의 온/습도 특성)

  • Gil, Min-Woo;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Youn-Sung;Park, Jong-Yeop;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.51-52
    • /
    • 2023
  • Recently, heat island and dry island phenomena occur frequently due to land surface development and excessive energy consumption in urban areas. As a result, the surface temperature of the building and the entire temperature of its surroundings are increased, and as a result, the durability of the building is rapidly deteriorated. In order to suppress these causes, a method of maintaining the temperature of road heating wires was implemented as a temporary measure, but this did not predict climate change. Therefore, this study is a method to measure the compressive strength, density, and thermal conductivity of light weight concrete using waste glass foam beads. After fabricating a simple chamber, the temperature and humidity of the inside and outside were measured with an Arduino device in consideration of external factors. Therefore, if waste glass foam beads made through proper mixing are constructed in the urban center, the quality of the urban can be improved.

  • PDF

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.

Experimental studies on the characteristics of the mortar using dispersing agent of cement and high fluid admxiture (시멘트 분산제(分産劑) 및 고류동화제(高流動化劑)를 사용(使用)한 모르터의 제(諸) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Park, In-Gyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.146-159
    • /
    • 1984
  • This study was the contrast of the compressive strength, the tensile strength, the reducing ratio and the flow of mortar using dispersing agent and high fluid admix. 1. The admix ratio of chemical admixtures espressing maximum strength appeared the same result high fluid admix SP was 0.6%, the dispersing agents LG and C211 were 0.2%, SK was 0.3%, C376 was 0.5%. But two or three times more than standard quantity made the strength's fast lowness, which influenced bad to wateriness and retard the soli-dification. 2. When proper quantity of chemical admixture was used, the increment of compressive strength was as follows. High fluid admix SP was 40.7% and the average increasing rate of dispersing agents(C211 was 19.5%, LG was 19.1%, C376 was 17.9%) was 18.7% more than normal mortar in the codition of 7 days. Also, in the condition of 28 days, high fluid admix SP was about 24.4% and the average of dispersing agents(LG was 21.1%, C211 was 16.4%, SK was 11.1%, C376 was 7.6%) was 14.1%. 3. When proper quantity of chemical admixture was used, the increment of tensile strength was as follows. High fluid admixture SP was 26.6% and the average increasing agents(SK was 16.0%, C376 was 14.7%, LG was 10%, C211 was 5.8%) was 11.6%. Also, in the condition of 28 days, high fluid admix SP was 16.5% and the average increasing rate of dispersing agents(LG was 19.1%, SK was 10.6%, C211 was 10.1%, C376 was 8.7%) was 12.1%. 4. As for the reducing ratio of each dispersing agent, he flow of mortar was less than the slump of concrete. That is; the reducing ratio of concrete was 15% adding each dispersing agent, but the reducing ratio of mortar was in the range of from 5.8% to 13.5% in 1 : 1 mixture, from 7.6% to 14.2% in 1 : 2, from 9.5% to 18.8% in 1 : 3. 5. The fluidity of each chemical admixture was as follows. High fluid admix SP in the condition of 1: 1 and 1 : 2 showed the best result than other dispersing agent and 1 : 3 showed the same result like other agents. Therefore these good dispersing agents were suitable in the prepact concrete construction using intrusion mortar.

  • PDF