DOI QR코드

DOI QR Code

Condition assessment of aged underground water tanks-Case study

  • Received : 2023.02.08
  • Accepted : 2024.05.13
  • Published : 2024.06.10

Abstract

This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

Keywords

References

  1. Abu Dabous, S., Yaghi, S., Alkass, S. and Moselhi, O. (2017), "Concrete bridge deck condition assessment using IR thermography and ground penetrating radar technologies", Auto. Constr., 81, 340-354. https://doi.org/10.1016/j.autcon.2017.04.006. 
  2. ACI 201.1R (2008), Guide for Conducting a Visual Inspection of Concrete in Service, American Concrete Institute, Farmington Hills, MI, USA. 
  3. ACI 228.1R (2019), In-place Methods to Estimate Concrete Strength, American Concrete Institute, Farmington Hills, MI, USA. 
  4. ACI 228.2R (2013), Report on Nondestructive Test Methods for Evaluation of Concrete in Structures, American Concrete Institute, Farmington Hills, MI, USA. 
  5. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA. 
  6. ACI 364.1R (2007), Guide for Evaluation of Concrete Structures before Rehabilitation, American Concrete Institute, Farmington Hills, MI, USA. 
  7. Aggelis, D.G., Kordatos, E.Z., Soulioti, D.V. and Matikas, T.E. (2010), "Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete", Constr. Build. Mater, 24, 1888-1897. https://doi.org/10.1016/j.conbuildmat.2010.04.014. 
  8. Ahmed, H., La, H.M. and Gucunski, N. (2020), "Review of non-destructive civil infrastructure evaluation for bridges: State-of-the-art robotic platforms, sensors and algorithms", Sensor., 20, 3954. https://doi.org/10.3390/s20143954. 
  9. Ali-Benyahia, K., Sbartai, Z., Breysse, D., Kenai, S. and Ghrici, M. (2017), "Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study", Case Stud. Constr. Mater., 6, 109-119. https://doi.org/10.1016/j.cscm.2017.01.004. 
  10. Alwash, M., Breysse, D., Sbartai, Z. M., Szilagyi, K. and Borosnyoi, A. (2017), "Factors affecting the reliability of assessing the concrete strength by rebound hammer and cores", Constr. Build. Mater., 140, 354-363. https://doi.org/10.1016/j.conbuildmat.2017.02.129. 
  11. ASTM C1218/C1218M (2015) Standard Test Method for Water-Soluble Chloride in Mortar and Concrete, American Society for Testing and Materials, West Conshohocken, PA 19428-2959, USA. 
  12. ASTM C42/C42M (2020), Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. American Society for Testing and Materials, West Conshohocken, PA 19428-2959, USA. 
  13. ASTM C597 (2016), Standard Test Method for Pulse Velocity Through Concrete, American Society for Testing and Materials, West Conshohocken, PA 19428-2959, USA. 
  14. ASTM C805/C805M (2018), Standard Test Method for Rebound Number of Hardened Concrete, American Society for Testing and Materials, West Conshohocken, PA 19428-2959, USA. 
  15. ASTM C876 (2022), Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, American Society for Testing and Materials, West Conshohocken, PA 19428-2959, USA. 
  16. Barbosa, M.T.G., Rosse, V.J. and Laurindo, N.G. (2021), "Thermography evaluation strategy proposal due moisture damage on building facades", J. Build. Eng., 43, 102555. https://doi.org/10.1016/j.jobe.2021.102555. 
  17. Barreira, E., Almeida, R.M.S.F. and Delgado, J.M.P.Q. (2016), "Infrared thermography for assessing moisture related phenomena in building components", Constr. Build. Mater., 110, 251-269. https://doi.org/10.1016/j.conbuildmat.2016.02.026. 
  18. Breysse, D., Klysz, G., Derobert, X., Sirieix, C. and Lataste, J.F. (2008), "How to combine several non-destructive techniques for a better assessment of concrete structures", Cement Concrete Res., 38(6), 783-793. https://doi.org/10.1016/j.cemconres.2008.01.016. 
  19. BS EN 14630 (2006), Products and Systems for the Protection and Repair of Concrete Structures, Test Methods, Determination of Carbonation Depth in Hardened Concrete by the Phenolphthalein Method, British Standards Institution, Brussels, Belgium. 
  20. Cheng, C. and Shen, Z. (2021), "Semi real-time detection of subsurface consolidation defects during concrete curing stage", Constr. Build. Mater., 270, 121489. https://doi.org/10.1016/j.conbuildmat.2020.121489. 
  21. Cristofaro, M.T., D'Ambrisi, A., De Stefano, M., Tanganelli, M. and Pucinotti, R. (2012), "Mechanical characterization of concrete from existing buildings with SonReb method", Proceedings of the Fifteenth World Conference on Earthquake Engineering, Lisbon, Portugal. 
  22. Cristofaro, M.T., Viti, S. and Tanganelli M. (2020), "New predictive models to evaluate concrete compressive strength using the SonReb method", J. Build. Eng., 27, 100962, https://doi.org/10.1016/j.jobe.2019.100962. 
  23. Doshvarpassand, S., Wu, C. and Wang, X. (2019), "An overview of corrosion defect characterization using active infrared thermography", Infrar. Phys. Technol., 96, 366-389. https://doi.org/10.1016/j.infrared.2018.12.006. 
  24. Fan, J.L., Guo, X.L. and Wu, C.W. (2012), "Fatigue performance assessment of welded joints using the infrared thermography", Struct. Eng. Mech., 44(4), 417-429. http://doi.org/10.12989/sem.2012.44.4.417. 
  25. Garrido, I., Laguela, S., Otero, R. and Arias, P. (2020), "Thermographic methodologies used in infrastructure inspection: A review-data acquisition procedures", Infrar. Phys. Technol., 111, 103481. https://doi.org/10.1016/j.infrared.2020.103481. 
  26. Gucunski, N., Kee, S., Basily, H. and Maher, A. (2015), "Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform", Struct. Monit. Mainten., 2(1), 19-34. http://doi.org/10.12989/smm.2015.2.1.019. 
  27. Janku, M. and Stryk, J. (2017), "Application of infrared camera to bituminous concrete pavements: Measuring vehicle", IOP Conf. Ser. Mater. Sci. Eng., 236, 012104, https://doi.org/10.1088/1757-899X/236/1/012104. 
  28. Janku, M., Cikrle, P., Grosek, J., Anton, O. and Stryk, J. (2019), "Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges", Constr. Build. Mater., 225, 1098-1111. https://doi.org/10.1016/j.conbuildmat.2019.07.320. 
  29. Kobayashi, K. and Banthia, N. (2011), "Corrosion detection in reinforced concrete using induction heating and infrared thermography", J. Civil Struct. Hlth. Monit., 1, 25-35. https://doi.org/10.1007/s13349-010-0002-4. 
  30. Kulkarni, N.N., Dabetwar, S., Benoit, J., Yu, T. and Sabato, A. (2022), "Comparative analysis of infrared thermography processing techniques for roadways' sub-pavement voids detection", NDT Int., 129, 102652, https://doi.org/10.1016/j.ndteint.2022.102652. 
  31. Lerma, C., Mas, A., Gil, E., Vercher, J. and Penalver, M.J. (2014), "Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography". Mater. Construccion, 64(313), e009. https://doi.org/10.3989/mc.2013.06612. 
  32. Lim, M.K. and Cao, H. (2013), "Combining multiple NDT methods to improve testing effectiveness", Constr. Build. Mater., 38, 1310-1315. https://doi.org/10.1016/j.conbuildmat.2011.01.011. 
  33. Mangat, P.S. and Molloy, B.T. (1994), "Prediction of long term chloride concentration in concrete", Mater. Struct., 27, 338-346. https://doi.org/10.1007/BF02473426. 
  34. Nobile, L. (2015), "Prediction of concrete compressive strength by combined non-destructive methods", Meccanica, 50(2), 411-417. https://doi.org/10.1007/s11012-014-9881-5. 
  35. Omar, T. and Nehdi, M.L. (2017), "Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography", Auto. Constr., 83, 360-371. https://doi.org/10.1016/j.autcon.2017.06.024. 
  36. Pereira, N. and Romao, X. (2018), "Assessing concrete strength variability in existing structures based on the results of NDTs", Constr. Build. Mater., 173, 786-800. https://doi.org/10.1016/j.conbuildmat.2018.04.055. 
  37. Porco, F., Uva, G., Fiore, A. and Mezzina, M. (2014), "Assessment of concrete degradation in existing structures: A practical procedure", Struct. Eng. Mech., 52(4), 701-721. https://doi.org/10.12989/sem.2014.52.4.701. 
  38. Pozzer, S., Dalla Rosa, F., Pravia, Z.M.C., Rezazadeh Azar, E. and Maldague, X. (2021), "Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography". Appl. Sci., 11, 4323. https://doi.org/10.3390/app11104323. 
  39. RILEM (2001), "Probabilistic assessment of existing structures", Rep. No. Rep03, JCSS Report, RILEM Publications SARL.
  40. Saleem, M. (2018), "Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test", Struct. Eng. Mech., 65(5), 601-609. https://doi.org/10.12989/sem.2018.65.5.601. 
  41. Saleh, A.K., Sakka, Z. and Almuhanna, H. (2022), "The application of two-dimensional continuous wavelet transform based on active infrared thermography for subsurface defect detection in concrete structures", Build., 12, 1967. https://doi.org/10.3390/buildings12111967. 
  42. Sham, J.F.C., Lai, W.W.L., Chan, W. and Koh, C.L. (2019), "Imaging and condition diagnosis of underground sewer liners via active and passive infrared thermography: A case study in Singapore", Tunnel. Undergr. Space Technol., 84, 440-450. https://doi.org/10.1016/j.tust.2018.11.013. 
  43. Tavukcuoglu, A., Akevren, S. and Grinzato, E. (2010), "In situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing", J. Modern Opt., 57, 1779-1789. https://doi.org/10.1080/09500340.2010.484553. 
  44. Yousefi, B., Sfarra, S., Sarasini, F., Castanedo, C.I. and Maldague, X.P.V. (2019), "Low-rank sparse principal component thermography (sparse-PCT): Comparative assessment on detection of subsurface defects", Infrar. Phys. Technol., 98, 278-284. https://doi.org/10.1016/j.infrared.2019.03.012.