• Title/Summary/Keyword: compressive strength of standard

Search Result 555, Processing Time 0.026 seconds

A Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 연구)

  • 이승한
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • This study was performed to get high strength of the precase concrete adopting a steam curing by using a gypsum-admixture for the high strength concrete. The superplasticizer was used to compensate low slump of base concrete keeping its slump up about $6{\pm}1cm$. To examine the property for strength revelation of concrete using admixtures for a high strength concrete, steam and standard curing were compared each other. Test results were shown that admixtures for high strength concrete were more effective in steam curing than standard curing. On the condition that the unit cement content is about $530{\sim}600kg/m^3$, the compressive strength of concrete replacing by 10% of the admixture was obtained over $65Okgf/cm^2$, which was increased as 1.3 times as that for the nonreplacement. When the admixture was replaced to 15-30%, the compressive strengh was obtained over $700kgf/cm^2$ which was increased as 1.4 - 1.5 times. Therefore, the admixture for high strength concrete, being effective in steam curing, was more efficient to get a high strength concrete using only steam curing instead of an autoclave curing for the secondary products of cement.

Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network (신경망을 이용한 콘크리트 배합요소 및 압축강도 추정)

  • 김인수;이종헌;양동석;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2002
  • An artificial neural network was applied to predict compressive strength, slump value and mix proportion of a concrete. Standard mixed tables were trained and estimated, and the results were compared with those of the experiments. To consider variabilities of material properties, the standard mixed fables from two companies of Ready Mixed Concrete were used. And they were trained with the neural network. In this paper, standard back propagation network was used. The mix proportion factors such as water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate and air entraining admixture were used. For the arrangement on the approval of prediction of mix proportion factor, the standard compressive strength of $180kgf/cm^2{\sim}300kgf/cm^2$, and target slump value of 8 cm, 15 cm were used. For the arrangement on the approval of prediction of compressive strength and slump value, the standard compressive strength of $210kgf/cm^2{\sim}240kgf/cm^2$, and target slump value of 12 cm and 15 cm wore used because these ranges are most frequently used. In results, in the prediction of mix proportion factor, for all of the water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate, air entraining admixture, the predicted values and the values of standard mixed tables were almost the same within the target error of 0.10 and 0.05, regardless of two companies. And in the prediction of compressive strength and slump value, the predicted values were converged well to the values of standard mixed fables within the target error of 0.10, 0.05, 0.001. Finally artificial neural network is successfully applied to the prediction of concrete mixture and compressive strength.

Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials (혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Jeon, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • The purpose of this study is to propose a simple model to evaluate the compressive strength development of concrete with various supplementary cementitious materials (SCMs) and cured under different temperatures. For the generalization of the model, the ACI 209 parabola equation was modified based on the maturity function and then experimental constants A and B and 28-day compressive strength were determined from the regression analysis using a total of 265 data-sets compiled from the available literature. To verify the proposed model, concrete specimens classified into 3 Groups were prepared according to the SCM level as a partial replacement of cement and curing temperature. The analysis of existing data clearly revealed that the 28-day compressive strength decreases when the curing temperature is higher and/or lower than the reference curing temperature ($20^{\circ}C$). Furthermore, test results showed that the compressive strength development of concrete cured under $20^{\circ}C$ until an early age of 3 days was marginally affected by the curing temperature afterward. The proposed model accurately predicts the compressive strength development of concrete tested, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.00 and 0.08, respectively.

A Study on the Strength Properties of High-Strength concrete under Various curing conditions (각종 양생방법에 따른 고강도 콘크리트의 강도발현 특성에 관한 연구(2))

  • Park, Seung-Wan;Cho, Hyun-Dae;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.273-274
    • /
    • 2009
  • The curing method used on domestic sites for checking the concrete compressive strength of a structure. The curing method used for testing the specimens must be the standard ponding curing method (20${\pm}$%$2^{\circ}$C). However, because in-placed concrete is exposed to open air and cured under the seasonal temperature changes, the compressive strength of a real structure is different from the tested compressive strength. Therefore the curing method suggested in this research, which sets the internal conditions of the structural specimens as the conditions of the applied curing method. this thesis suggests the specimen curing method that most closely re-enacts the compressive strength of the concrete used on the structural specimens

  • PDF

Machine learning models for predicting the compressive strength of concrete containing nano silica

  • Garg, Aman;Aggarwal, Paratibha;Aggarwal, Yogesh;Belarbi, M.O.;Chalak, H.D.;Tounsi, Abdelouahed;Gulia, Reeta
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Experimentally predicting the compressive strength (CS) of concrete (for a mix design) is a time-consuming and laborious process. The present study aims to propose surrogate models based on Support Vector Machine (SVM) and Gaussian Process Regression (GPR) machine learning techniques, which can predict the CS of concrete containing nano-silica. Content of cement, aggregates, nano-silica and its fineness, water-binder ratio, and the days at which strength has to be predicted are the input variables. The efficiency of the models is compared in terms of Correlation Coefficient (CC), Root Mean Square Error (RMSE), Variance Account For (VAF), Nash-Sutcliffe Efficiency (NSE), and RMSE to observation's standard deviation ratio (RSR). It has been observed that the SVM outperforms GPR in predicting the CS of the concrete containing nano-silica.

A Plan to guarantee quality of Light-weight Cellular Concrete for floating floor (뜬바닥용 기포콘크리트의 품질확보 방안)

  • 이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.938-943
    • /
    • 2003
  • The characteristics of lightweight cellular concrete has much influence on the compressive strength and flow from the design of mixture. This study is to investigate the characteristics of the compressive strength and flow for the mixture of lightweight cellular slurry. KS F 4039 was compared to the construction system and quality for lightweight cellular comcrete of floating floor. As the result of this study, the standard of the compression strength for target slurry have to lower and an upper limit of flow was judged to be 230mm

  • PDF

A Study on Properties of Mortar added with Admixtures (-혼화재(混和材)를 사용(使用)한 Mortar의 성질(性質)에 관(關)한 연구(硏究)-)

  • Kang, Sin Up;Kim, Seong Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.257-264
    • /
    • 1975
  • This research was attempted as one of a study for investigating optimum contents of fly ash and briquette ash when they were used as admixtures. In mix designs of mortar, fly ash and briquette ash to cement, each of them, was mixed with 0, 5, 10, 15, 20, 25, 30 percent by weight of cement. They were tested for compressive strength, tension strength and bending strength, and these results were summarized as follows; 1. The compressive strength of mortar to add fly ash showed the maximum value at 25 percent. tension strength, 20 percent, bending strength, 15 percent. 2. In case of using briquette ash, compressive strength showed maximum strength at 15 percent. tension strength, 20 percent, bending strength, 20 percent. 3. To add fly ash showed in general more additive effect than to add briquette ash. 4. It was not only to excess standard strength but may be to develop as admixture when briquette ash was used around 20 percent.

  • PDF

Mixing and Compressive Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 비빔 및 압축강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.28-31
    • /
    • 2004
  • This paper discusses the role of micro and macrofibers in the workability, compressive strength, and failure of cementitious composites. Workability(flow), compressive strength, splitting strength and fracture mechanism of hybrid fiber reinforced cement composites(HFRCC) have been investigated by means of Korean Standard (KS). The specific blend pursued in this investigation is a combination of polyvinyl alcohol(PVA) and steel cord. It was demonstrated that a hybrid combination of steel and PVA enhances fiber dispersion compared to only steel cord reinforced cement composites and that the brittle and wide cracking was much reduced in HFRCC as expected because in the matrix containing the PVA fiber around the steel cord, a multiple microcracking occurred and the steel cord could sufficiently work for bridging the cracked surface.

  • PDF

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

An Experimental Study on the Compressive Strength of High Strength Concrete According to Testing Condition (시험조건과 고강도콘크리트의 압축강도 관계에 관한 실험적 연구)

  • Chin, Young-Gil;Lee, Yong-Su;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The strength and durability of concrete are affected by various factors such as the quality of material, mixing ratio, construction, the method of cure, time elapsed. the condition of test and etc., it is very difficult to pre-estimate the strength of concrete with the use of experimental specimen. The domestic standard of specimen cylindrical type and its sizes are both l0cm$\times$20cm and 15cm$\times$30cm, which are prescribed in KS F2405, and the loading speed is prescribed to test with 2~3kgf/$\textrm{cm}^2$ per second. The loading speed should have great effect on the compressive strength, but in reality in the construction site sometimes the loading speed is applied so dubiously that the value of the compressive strength can be unreliable. And the cross sectional area of a specimen should be level and smooth, otherwise it can be broken at a lower stress than the real strength through the eccentric or intensive working of the load. Capping should be carried out in order to measure the strength correctly. And used for capping are various materials such as capping compound, cement glue, plaster, mechanical grinding and etc. In this study, therefore, I have carried out an experiment on the relationship among the loading speed, the ratio of height to diameter of specimen, the method of capping, and the compressive strength, for the efficient quality control of concrete structures. So this study has been purposed to provide some basic data that can be used effectively at construction sites.