• Title/Summary/Keyword: compressive strength equation

Search Result 356, Processing Time 0.026 seconds

Evaluation of Minimum Shear Reinforcement Content of Reinforced Concrete Beams (철근콘크리트 보의 최소전단철근비 예측)

  • 윤성현;이정윤;김상우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • An evaluation equation of the minimum shear reinforcement content for reinforced concrete beams was theoretically proposed. The proposed equation takes into account the effects of compressive strength of concrete, longitudinal reinforcement content and shear span ratio. The proposed equation was compared with the current ACI 318-99 and CSA A23.3-94 codes.

  • PDF

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Development of Compressive Strength Estimation Equation for Concrete Mixed with Granite Aggregates (화강암골재를 사용한 콘크리트의 강도추정식 개발)

  • Rhim, Hong-Chul;Seo, Tae-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2002
  • Prediction for the compressive strength of concrete by non-destructive tests(NDT) has a tendency to show different outcomes according to various aggregates. The purpose of this study is to develop estimation equation by rebound number, ultrasonic velocity and combined method at concrete structures which used granite as coarse aggregates. The test variable is water/cement ratio(41.1%, 48.6%, 67.6%), curing method(moisture condition, dry condition) and age(7, 14, 28, 56). According to the test variable, new equation was suggested, and compared with the existing equations.

A New Proposal for the Estimated Equation of Concrete Strength by Penetration Test (관입시험법에 의한 콘크리트 압축강도 추정식의 제안에 관한 연구)

  • 권영웅;신정식;박만철;이성용;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.381-384
    • /
    • 2002
  • This study aims to propose the new strength equation of concrete by penetration test. There are not only few estimate strength equation of concrete, but also many problems to apply them to the real structure because of speed, cost, easiness, structual damage, reliability and so on. For this study, there performed a series of test and proposed a strength equation as follows ; fc = 5661 - 219.5d + $2.17d^2 (단, R^2 = 98.6%$) fc : estimated compressive strength of concrete by kgf/$cm^2$ d: penetrated depth of concrete by mm.

  • PDF

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내 실정에 적합한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;송재호;박훈규;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.245-250
    • /
    • 1996
  • The aim of this study is to suggest the new elastic modulus equation that suits to a domestic situation to coincide the improved mechanical properties of high-strength concrete and ultra-high-strength concrete. For thish purpose, this study collected the laboratory data more than 400 connceted with the the modulus of elasticity that performed in this country and also analyzed it statistically. The compressive strength of investigated concrete ranged from 400 to 1,400kg/$\textrm{cm}^2$. As a result, a practical and useful elastic modulus equation is proposed, it can be considered as most suitable equation in domestic situation.

  • PDF

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내의 실험자료를 이용한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;박훈규;윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.213-222
    • /
    • 1996
  • This paper presents the improved elastic modulus equation more appropriate to predict the modulus of elasticity of structural elements designed and made by high- and ultra high-strength concrete under domestic situation in Korea. To justify and assess the proposed elastic modulus equation, more than 400 laboratory test data domestically available in the literature and having the range of 400 to 1.000kg/$\textrm{cm}^2$ in concrete compressive strength were collected and analyzed statistically. Comparison of the proposed elastic modulus equation with the previously suggested equations in the ACI363R. CEB-FIP, NS3473 and New-RC were also presented to demonstrate the applicability to practice.

Characteristics of Compressive Strength of Concrete due to Form Curing Condition (거푸집 양생 조건에 따른 콘크리트의 압축강도 특성)

  • Kim, Kyoungnam;Park, Sangyeol;Moon, Kyoungtae;Shim, Jaeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • The time for form removal is an important factor for ensuring the safety and economical efficiency of concrete structures, because it affects the quality, period, and cost of construction. Although local specifications suggest the form curing time, there is a problem of low quality of concrete due to early removing of form. This is because they do not fully understand effect of curing condition, and they want to shorten construction period in the field. Therefore, this research evaluates the effect of curing condition according to the time for form removal by testing specimen. As a result, the concrete compressive strength at the age of 28 days decreased about 40% in the condition of form removal after 12 hours, while the strength in the condition of form removal after 28 days decreased about 7%. Finally, this paper suggests an estimating equation for the concrete compressive strength due to the time for form removal considering various curing temperatures as equivalent ages. The proposed equation can be used in the field for evaluating the strength after form removal.

Estimation of Aging Effects on Determination of Compressive Strength of Concrete by Non-Destructive Tests (비파괴 시험에 의한 콘크리트 압축강도 및 반발도의 재령계수 추정)

  • 김민수;윤영호;김진근;권영웅;이승석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.782-788
    • /
    • 2002
  • Several non-destructive test methods have been developed to estimate compressive strength of concrete in other countries. However, their applications are limited in domestic concrete due to their inaccuracies. The purpose of this study is to propose an aging coefficient of compressive strength of structural concrete in rebound number method and ultrasonic pulse velocity method for domestic concrete. The test variables include type of aggregate, curing condition, and compressive strength. Two approaches are used to estimate aging coefficient. One is evaluated by uniform linear regression equation for all ages and shows uniform strength reduction coefficient regardless of material properties and the other is evaluated by individual regression equation for each ages and shows nonuniform strength reduction and rebound increasing coefficients which decrease with increasing of rebound number and compressive strength. The latter result which can include the effect of rebound number and compressive strength is more resonable than the former.

A Study on the Strength Estimation Formular of the Precast Concrete Products Using the Chloride Ion Penetrating Test (염소이온투과시험을 이용한 콘크리트제품의 강도추정에 관한 연구)

  • 장문기;이정재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.146-149
    • /
    • 1998
  • In this study, the chloride ion penetration test and the compressive strength test should be done simultaneously on the standard cylinder specimen. And from analyzing the data from those tests, a strength estimation equation with high credibility is to be developed.

  • PDF

Ultimate Compressive Strength of Concrete Filled Circular Stub Columns (CFCT 단주의 최대내력에 관한 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.233-240
    • /
    • 1999
  • It is well known that the ultimate compressive strength of concrete filled tubular stub-column is higher than that of the simplified evaluating value because of the confinement effect of infilled concrete. In this paper, It is compared the experimental results of other researchers with estimated ones by using the formulae. Finally, It is shown that the predicted equation is obtained by using the numerical analysis.

  • PDF