• Title/Summary/Keyword: compressive capacity

Search Result 786, Processing Time 0.026 seconds

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag (상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향)

  • Nam, Yi-Hyun;Jang, Seok-Joon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

Development of Reinforcement Grout Materials Using Blast Furnace Slag Powder and Aramid Fiber (고로슬래그 미분말과 아라미드 섬유를 이용한 보강그라우트재 개발)

  • Seo, Hyeok;Park, Kyung-Ho;Kim, Chan-Jung;Kim, Ho-Chul;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of structures damaged resulting from settlement due to elevation and vibration or differential settlement, and for cutoff. The purpose of this research is to enhance the compressive strength of grout materials by using aramid fiber and develop a high-strength ground improvement method by using blast furnace slag powder. In this regard, this study has conducted a uniaxial compression test after checking the high charge (higher than 50%) of the ratio of blast furnace slag powder and cement at 100:0, 70:30 and 40:60%, adding the aramid mixture based on 0, 0.5 and 1.0% of the cement and furnace slag powder weight and creating sand gels based on surface oiling rate of 0.7 and 1.2%. For the environmental review evaluation, a heavy metal exudation test and a pH test measurement have been conducted. The experiment results showed that 1% increase of aramid fiber led to 1.3 times greater uniaxial compression intensity. As for the hexavalent chrome, a 30% increase in blast furnace slag powder led to approximately 50% decrease in heavy metal exudation. However, the pH test revealed that a 30% increase in blast furnace slag powder resulted in approximately 0.5 increase in pH. Further research on the pH part is needed in the future.

A Study on the Behaviour of a Single Pile to Adjacent Tunnelling Conducted in the Lateral Direction of the Pile (단독말뚝의 측면으로 시공되는 터널에 의한 말뚝의 거동 연구)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2011
  • Three-dimensional(3D) numerical analyses have been conducted to study the behaviour of a single pile to adjacent tunnelling conducted in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the axial force on the pile. In particular, the shear stress transfer mechanism along the pile related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement between the pile and the soil next to the pile during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Downward shear stress developed above the tunnel springline (Z/L=0.0-0.7~0.8), while upward shear stress is mobilised below the tunnel springline (Z/L=0.7~0.8-1.0) resulting in compressive force on the pile, where Z is the pile location and L is the pile length. Maximum compressive force of about $0.475P_a$ was developed on the pile after completion of tunnel advancement, where $P_a$ is the allowable pile capacity. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동)

  • Kim, Sung Bae;Kim, Hyun Young;Yi, Na Hyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.543-550
    • /
    • 2009
  • This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

The Status of Clay Minerals in Aggregates and Their Effect on the Concrete Performance (골재에 포함된 토분의 현황 조사 및 콘크리트의 성능에 미치는 영향)

  • Kim, In;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.393-402
    • /
    • 2024
  • The Korean Industrial Standard(KS) KS F 2527("Aggregates for Concrete") does not explicitly define criteria for clay mineral content in aggregates. This lack of clear quality standards and testing methodologies is further compounded by a scarcity of relevant research within both academic and industrial spheres. Consequently, the construction industry, encompassing both aggregate production and utilization, often overlooks the management of clay mineral content due to its perceived economic implications. This study addresses this gap by investigating the current state of regulations concerning clay mineral content in aggregates, exploring the causes of its occurrence, and evaluating its impact on concrete performance. The chemical composition of the clay minerals was determined to primarily consist of Al2O3, Fe2O3, and SiO2, which are commonly found in clay. X-ray diffraction(XRD) analysis revealed that the predominant clay minerals were montmorillonite and illite, both known for their high absorption capacity. An examination of domestic and international standards for clay mineral content in aggregates demonstrated that the density and absorption rate specifications outlined in KS F 2527("Aggregates for Concrete") only offer indirect estimations of clay mineral levels. Furthermore, the investigation into the influence of clay mineral content on concrete performance suggests that a higher clay mineral content necessitates a corresponding increase in the unit quantity of aggregates to maintain adequate workability. This, however, has a detrimental effect on the compressive strength of the concrete.

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Inelastic Analysis of Steel-Concrete Composite Column with Non-Compact Steel Section (비조밀단면을 가진 SC 합성 기둥의 비선형 해석)

  • Oh, Myoung Ho;Jang, Tae Young;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.63-71
    • /
    • 2005
  • There were already several studies conducted on the steel-concrete (SC) composite column, which was developedcomplement the weaknesses and maintain the advantages of previous composite columns. The axial compressive capacity of the SC composite column was estimated by the tests in previous studies, but the experiments for the large-scale column could not be performed because of the limitation with the laboratory's capacity. In this study, the analytical study was performed using the general finite element analysis program to reflect the interaction of concrete and steel and the local buckling of steel flange composed of the non-compact section. The appropriateness of the analytical model was verified by the comparison between experimental and analytical results. The nonlinear behavior of full-scale SC composite column was analyzed using the verified analytical model. From these analytical studies, it was concluded that the width-to-thickness ratio of the steel cross-section of the SC composite column should not exceed 25:0. The section area of the link is best when it is over 0.025 dt, and the link distance is to be less than D/2 or 300mm.

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.