• Title/Summary/Keyword: compression damage

Search Result 377, Processing Time 0.025 seconds

Diagnosis and treatment of the odontoid process fracture of the axis in a dog (강아지 고리뼈의 치아돌기 골절 진단과 치료)

  • Hyoung Joon Park;ShinHo Lee;Chung Hui Kim;ChungKil Won;Jae-Hyeon Cho
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.87-92
    • /
    • 2023
  • A 7-year-old dog weighing 3.9 kg visited the hospital with symptoms of inability to stand and quadriparesis. There were seizure symptoms 2 months before admission to the hospital, and the symptoms of stiffness and rigidity appeared. Radiographs showed normal vertebrae in cervical vertebral column. Magnetic resonance imaging (MRI) and computed tomography (CT) were performed immediately to diagnose vertebral lameness. As a result of the CT, it was possible to observe the fracture of the odontoid process of the axis, and the exact location of the damage was identified. The odontoid process was fractured and separated from the body of the 2nd cervical vertebra (axis), and fragment of the process was observed inside the vertebral arch of the first cervical vertebra (atlas), and the body of the axis was lifted to the dorsal side. The MRI examination reflected the CT findings and confirmed severe spinal cord compression due to the fracture of the odontoid process. The patient was applied by neck brace and medical management including Mycophenolate mofetil administration was performed. The patient was able to move legs and tail after 2 weeks, and was able to voluntarily defecate, urinate and stand up after 4 weeks of administration.

Implementation of Vehicle Location Identification and Image Verification System in Port (항만내 차량 위치인식 및 영상 확인 시스템 구현)

  • Lee, Ki-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.201-208
    • /
    • 2009
  • As the ubiquitous environment is created, the latest ports introduce U-Port services in managing ports generally and embody container's location identification system, port terminal management system, and advanced information exchange system etc. In particular, the location identification system for freight cars and containers provide in real time the information on the location and condition for them, and enables them to cope with an efficient vehicle operation management and its related problems immediately. However, such a system is insufficient in effectively handling with the troubles in a large-scale port including freight car's disorderly driving, parking, stop, theft, damage, accident, trespassing and controlling. In order to solve these problems, this study structures the vehicle positioning system and the image verification system unsing high resolution image compression and AVE/H.264 store and transmission technology, able to mark and identify the vehicle location on the digital map while a freight car has stayed in a port since the entry of an automatic gate, or able to identify the place of accident through image remotely.

Network design for correction of deterioration due to hologram compression (홀로그램 압축으로 인한 열화 보정을 위한 네트워크 설계)

  • Song, Joon Boum;jang, Junhyuck;Hwang, Yunseok;Cho, Inje
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.377-379
    • /
    • 2020
  • The hologram data is having a dependence on the pixel pitch of the SLM (spatial light modulator) and the wavelength of light, and the quality of the digital hologram is proportional to the unit pixel pitch and the total resolution. In addition, since each pixel has a complex value, the amount of data in the digital hologram also increases exponentially, and the size is bound to be very large. Therefore, in order to efficiently handle digital hologram files, it is essential to reduce the file size through a codec and store it. Recently, research on enhancing image quality damaged by the codec is actively underway. In this paper, the hologram image of JPEG Pleno, which is the standard hologram data, was used, and the image quality damage that occurs whenthe holographic image is encoded and decoded through the JPEG2000, AVC, and HEVC codec is enhanced with a deep learning network to find out whether the image quality can be improved. we also compare and quantitatively find out the degree of improvement in image quality.

  • PDF

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

A Study on the Performance of Surface UV Printing Device for Power Indicator Production (파워인덕터 생산용 표면 UV 인쇄장치 성능 연구)

  • Hyun-Mu Lee;So-Mi An;Sung-Min Ahn;Jeong-Hwan Seo;Byoung-Jo Jung;Sung-Lin Kang
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • Research on power inductor surface UV printing equipment using cylindrical magnets can prevent damage to quality consumable materials (making plates, Squeegees) during printing and improve printing quality by applying technology to prevent product from flipping or standing up when fixing the product by making the magnetic formation of cylindrical magnets form up and down. The development of cylindrical magnets that changed the direction of magnetic force will stabilize the fixing method for metal products made by powder compression, increasing the production capacity for small products. Finally, by studying the power inductor surface UV printing device using cylindrical magnets, it can be differentiated from the spray and deeping methods that were being worked on, production will be greatly improved, and as a result, cost reduction and competitive production will be possible.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

Structural Performance of Reinforced Concrete Shear Walls Partially Cutted for Opening (개구부 설치를 위해 인위적 손상을 가한 전단벽의 구조성능 평가)

  • Choi, Youn Cheul;Choi, Hyun Ki;Choi, Chang Sik;Lee, Li Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.77-86
    • /
    • 2007
  • The more demands on efficient utilization of resources, the more structural engineers prefer to select remodeling to improve old building's capacity. A series of four shear wall specimens were tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the effect of the opening on the lower center of the wall induce by remodeling. Consequently, the existence of opening was verified to induce a different failure, which was caused by reduction of compression strut area formed on the wall to diagonal direction. Especially, the ultimate strength of the wall with an opening was revealed approximately 35% lower than that of the wall without an opening. And the similar results were appeared in characteristics of stiffness and energy dissipation capacity.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.