• 제목/요약/키워드: composite truss girder

검색결과 17건 처리시간 0.009초

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma;Yongjian Liu;Kun Wang
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.667-679
    • /
    • 2023
  • Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.

CFT 트러스 거더 합성형교의 구조거동 평가 (Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge)

  • 정철헌;김혜지;송나영;마향욱
    • 대한토목학회논문집
    • /
    • 제30권2A호
    • /
    • pp.149-159
    • /
    • 2010
  • 본 연구에서는 전두께 프리캐스트 바닥판을 적용한 CFT 트러스 거더 합성형교의 구조거동을 평가하기 위한 실험적 연구를 수행하였다. 모형교량의 지간장은 20 m이고, CFT 트러스 거더의 상현재와 하현재는 콘크리트 충전강관 단면이다. CFT 트러스 거더 합성형교의 구조특성을 평가하기 위해 정적 및 동적실험을 수행하였다. 실험 및 해석에 의해 산정된 고유진동수가 잘 일치함을 확인하였고, 해석결과에서 거더간에 설치되는 브레이싱은 CFT 트러스 거더 합성형교의 고유진동수에 거의 영향을 미치지 않는 것으로 나타났다. 정적 휨 실험을 통해서 CFT 트러스 거더 합성형교의 항복강도 및 변형특성을 평가하였다. 또한, 실험결과를 통해서 프리캐스트 바닥판을 통한 등분포 전단연결재의 배치는 CFT 트러스 거더의 합성형교에 적용 가능함을 확인하였다.

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

Mechanical performance study and parametric analysis of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Mingsai;Xu, Hang
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.189-198
    • /
    • 2019
  • This paper aims to study the mechanical performance of three-tower four-span suspension bridges with steel truss girders, including the static and dynamic characteristics of the bridge system, and more importantly, the influence of structural parameters including the side-main span ratio, sag-to-span ratio and the girder stiffness on key mechanical indices. For this purpose, the Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is taken as an example in this study. This will be the first three-tower suspension bridge with steel truss girders in the world. The mechanical performance study and parametric analysis are conducted based on a validated three-dimensional spatial truss finite element model established for the Oujiang River North Estuary Bridge using MIDAS Civil. It is found that a relatively small side-main span ratio seems to be quite appropriate from the perspective of mechanical performance. And decreasing the sag-to-span ratio is an effective way to reduce the horizontal force subjected to the midtower and improve the antiskid safety of the main cable, while the vertical stiffness of the bridge will be reduced. However, the girder stiffness is shown to be of minimal significance on the mechanical performance. The findings from this paper can be used for design of three-tower suspension bridges with steel truss girders.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석 (Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory)

  • 최인식;여인호
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.600-606
    • /
    • 2007
  • 복부 파형강판 거더와 복합 트러스 거더의 정적 및 동적거동 특성을 분석하기 위해 3차원 유한요소해석을 수행하였고, 이 결과를 등가보 이론에 의한 해석결과와 비교하였다. 등가보 이론은 트러스 구조의 모든 단면제원을 등가의 보로 치환함과 동시에 전단계수 등의 단면특성을 고려한 이론이다. 등가보 이론 적용 시 복부 파형강판 거더의 전단계수는 복부 단면적에 대한 전체 단면적의 비로 산정하였고, 복합 트러스 거더의 전단계수는 Abdel의 계산식을 사용하여 산정하였다. 정적해석 및 자유진동해석 결과 3차원 유한요소모델을 이용한 해석결과가 전단변형을 고려한 등가보 이론에 의한 해석결과와 잘 일치하였다.

CFT 트러스 거더의 휨강성 및 진동특성 (Flexural Stiffness and Characteristics of Vibration in CFT Truss Girder)

  • 정철헌;송나영;김인규;진병무
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.19-30
    • /
    • 2009
  • 본 연구에서는 CFT 트러스 거더의 자유진동실험 결과를 토대로 주요 코드에서 규정하고 있는 CFT(concrete filled tube) 합성단면의 초기 휨강성 산정식을 평가하였다. 각 코드에서 규정하는 합성단면 초기 휨강성 산정식에 의한 CFT 트러스 거더의 자유진동 해석결과와 실험결과를 비교하였으며, 그 결과 CFT 트러스 거더의 자유진동실험 결과는 ACI의 휨강성 산정식을 적용하는 경우의 해석결과와 잘 일치하는 결과를 보였다. 이를 반영하여 f/L비 변화에 따른 CFT 트러스 거더의 자유진동해석을 수행하여 f/L비가 CFT 거더의 고유진동수에 미치는 영향을 분석하였다. CFT 트러스 거더의 f/L비는 거더의 전체강성에 영향을 주기 때문에 고유진동수를 변화시킨다. 수평모드에서의 고유진동수는 f/L비가 증가하면 감소하지만, 연직 모드에서의 고유진동수는 f/L비가 증가하면 선형적으로 증가하는 경향을 보였다.

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

ANI Girder(앵글 및 래티스 철근으로 구성된 강조립보)와 HCS(Hollow Core Slab)를 활용한 지하주차장 (Underground Parking Lot by ANI Girder(ANgle Integrated Girder) and HCS)

  • 최익준;전병갑;염경수;최성모
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2016
  • Through the story height reducing method, cost saving can be implemented in many aspects. Recently, as one of PC floor system, HCS(Hollow Core Slab) has been applied in many project, and it is proved that it is excellent in productivity, economic efficiency, and workability as well. We developed a new composite beam(ANI Girder) which can be associated with HCS and reinforced with a truss-shape rebar and angle. As a result of actual application on underground parking building with HCS, it is confirmed that this system is effective in workability and story height reducing.

  • PDF