• 제목/요약/키워드: composite patch repair

검색결과 62건 처리시간 0.023초

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

Rehabilitation of notched circular hollow sectional steel beam using CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.151-161
    • /
    • 2018
  • The application of carbon fiber reinforced polymer (CFRP) composites for rehabilitation of steel structures has become vital in recent years. This paper presents an experimental program and a finite element (FE) modelling approach to study the effectiveness of CFRP patch for repair of notch damaged circular hollow sectional (CHS) steel beams. The proposed modeling approach is unique because it takes into account the orthotropic behavior and stacking sequence of composite materials. Parametric study was conducted to investigate the effect of initial damage (i.e., notch depth) on flexural performance of the notched beams and effectiveness of the repair system using the validated FE models. Results demonstrated the ability of CFRP patch to repair notched CHS steel beams, restoring them to their original flexural stiffness and strength. The effect of composite patch repair technique on post-elastic stiffness was more pronounced compared to the elastic stiffness. Composite patch repair becomes more effective when the level of initial damage of beam increases.

Numerical study of bonded composite patch repair in damaged laminate composites

  • Azzeddine, Nacira;Benkheira, Ameur;Fekih, Sidi Mohamed;Belhouari, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.151-168
    • /
    • 2020
  • The present study deals with the repair of composite structures by bonding composite patches. The composite structure is a carbon/epoxy laminate with stacking sequence [45/-45/0/90]S. The damaged zone is simulated by a central crack and repaired by bonding symmetrical composite patches. The repair is carried out using composite patches laminated from the same elemental folds as those of the cracked specimen. Three-dimensional finite element method is used to determine the energy release rate along the front of repaired crack. The effects of the repair technique used single or double patch, the stacking sequence of the cracked composite patch and the adhesive properties were highlighted on the variations of the fracture energy in mode I and mixed mode I + II loading.

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF

노후항공기의 보수 방법 및 복합재 패치보수의 응용 (Repair methods for aging aircraft and application of composite patch repair)

  • 김위대;김종진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.

복합재료 보강재로 보수되어진 균열을 가진 두꺼운 평판의 피로균열 성장에 관한 연구 (A Study on Fatigue Crack Growth of Composite Patching Repaired on Cracked Thick Plate)

  • 정기현;양원호;고명훈
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2070-2077
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite Patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the palate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

보수된 균열을 가진 두꺼운 평판의 피로균열 성장 거동에 관한 실험적 연구 (A Experimental Study on the Fatigue Crack Growth Behavior of Thick Plate with Repaired Crack)

  • 정기현;양원호;김철;성기득
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.292-298
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

  • PDF

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

복합재 패춰의 열잔류응력 해석 (Analysis of Thermal Residual Stress in Composite Patches)

  • 김위대;김난호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF