DOI QR코드

DOI QR Code

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch

  • Setvati, Mahdi Razavi (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS) ;
  • Mustaffa, Zahiraniza (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS)
  • Received : 2018.12.09
  • Accepted : 2019.05.31
  • Published : 2019.07.10

Abstract

Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.

Keywords

References

  1. Abdullah, H.A., Klaiber, F.W. and Wipf, T.J. (2004), "Repair of steel composite beams with carbon fiber-reinforced polymer plates", J. Compos. Constr., 8(2), 163-172. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(163)
  2. ACI (American Concrete Institute) (2007), Report on fiber reinforced polymer (FRP) reinforcement for concrete structures (ACI-440R-07); ACI Committee 440 (Fiber Reinforced Polymer Reinforcement), USA.
  3. Ahmed, W.A.Z., Wan, H.W.B., Azrul, A.M. and Qahtan, A.H. (2015), "Finite element analysis of square CFST beam strengthened by CFRP composite material", Thin-Wall. Struct., 96, 348-358. https://doi.org/10.1016/j.tws.2015.08.019
  4. Ahmed, W.A.Z., Wan, H.W.B., Azrul, A.M. and Salam, J.H. (2017), "Rehabilitation and strengthening of high-strength rectangular CFST beams using a partial wrapping scheme of CFRP sheets: Experimental and numerical study", Thin-Wall. Struct., 114, 80-91. https://doi.org/10.1016/j.tws.2017.01.028
  5. Akbar, I., Oehlers, D.J. and Ali, M.M. (2010), "Derivation of the bond-slip characteristics for FRP plated steel members", J. Constr. Steel Res., 66, 1047-1056. https://doi.org/10.1016/j.jcsr.2010.03.003
  6. Allan, M., Chamila, S., Warna, K., Lance, M.G. and Paul, F. (2016), "Pre-impregnated carbon fibre reinforced composite system for patch repair of steel I-beams", J. Constr. Build. Mater., 105, 365-376. https://doi.org/10.1016/j.conbuildmat.2015.12.172
  7. Amer, H. (2014), "Crack-Dependent Response of Structural Steel Members Repaired with CFRP", Ph.D. Thesis; North Dakota State University, ND, USA.
  8. Amer, H., Yail, J.K. and Siamak, Y. (2011), "CFRP Repair of Steel Beams with Various Initial Crack Configurations", J. Compos. Constr., 15(6), 952-962. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000223
  9. Anyfantis, K.A. (2012), "Finite element predictions of compositeto-metal bonded joints with ductile adhesive materials", J. Compos. Struct., 94, 2632-2639. https://doi.org/10.1016/j.compstruct.2012.03.002
  10. ANSYS Inc. (2014), ANSYS Composite PrepPost (ACP) Training. URL: https://support.ansys.com/AnsysCustomerPortal/en_us
  11. ANSYS Inc. (2015), ANSYS Mechanical APDL Element Reference (V.15). URL: http://148.204.81.206/Ansys/150/ANSYS%20Mechanical%20APDL%20Element%20Reference.pdf
  12. Blanco, N. (2012), "Failure criteria for composite materials", Presentation; Universitat de Girona, Spain.
  13. Burlovic, D., Milat, A., Balunovic, M., Frank, D., Kotsidis, E.A., Kouloukouras, I.G. and Tsouvalis, N.G. (2016), "Finite element analysis of composite-to-steel type of joint for marine industry", J. Weld. World, 60(5), 859-867. https://doi.org/10.1007/s40194-016-0343-7
  14. CAE Associates (2012), ANSYS Cohesive Zone Modeling; Website of CAE Associates. URL: https://caeai.com/ansys-training
  15. Campilho, R.D.S.G., Moura, M.F.S.F. and Domingues, J.J.M.S. (2008), "Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs", Int. J. Solids Struct., 45(5), 1497-1512. https://doi.org/10.1016/j.ijsolstr.2007.10.003
  16. Chen, T., Qi, M., Gu, X.L. and Yu, Q.Q. (2015), "Flexural strength of carbon fiber reinforced polymer repaired cracked rectangular hollow section steel beams", J. Polym. Sci. http://dx.doi.org/10.1155/2015/204861
  17. Da Silva, L.F. and Campilho, R.D. (2012), Advances in Numerical Modelling of Adhesive Joints, Springer.
  18. Deng, J. and Lee, M.M.K. (2009), "Adhesive bonding in steel beams strengthened with CFRP", J. Struct. Build., 162, 241-249. https://doi.org/10.1680/stbu.2009.162.4.241
  19. Ephrem, A. and Akbar, I. (2012), "The flexural behaviour of tubular steel member strengthened with CFRP", Proceedings of 8th Asia Pacific Structural Engineering and Construction Conference and 1st International Conference for Civil Engineering Research, Surabaya, Indonesia.
  20. Eurocode 3 (2005), Design of Steel Structures-Parts 1-8: Design of Joints (BSEN 1993-1-8:2005), Standards Policy and Strategy Committee.
  21. Faris, A.U. and Mehtab, A. (2015), "Steel-CFRP composite and their shear response as vertical stirrup in beams", Steel Compos. Struct., Int. J., 18(5), 1145-1160. http://dx.doi.org/10.12989/scs.2015.18.5.1145
  22. Fernando, D. (2010), "Bond Behaviour and Debonding Failures in CFRP-strengthened Steel Structures", Ph.D. Thesis; Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong, China.
  23. Fernando, D., Yu, T., Teng, J.G., and Zhao, X.L. (2009), "CFRP strengthening of rectangular steel tubes subjected to end bearing loads: Effect of adhesive properties and finite element modelling", Thin-Wall. Struct., 47, 1020-1028. https://doi.org/10.1016/j.tws.2008.10.008
  24. Fernando, D., Yu, T. and Teng, J.G. (2015), "Behavior and modeling of CFRP-strengthened rectangular steel tubes subjected to a transverse end bearing load", Int. J. Struct. Stabil. Dyn., 15(8). https://doi.org/10.1142/S0219455415400313
  25. Galal, K., Seif, E.H.M. and Tirca, L. (2012), "Flexural Performance of Steel Girders Retrofitted Using CFRP Materials", J. Compos. Constr., 16(3), 265-276. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000264
  26. Gholami, M., Mohd S.A.R., Marsono, A.K., Tahir, M.M. and Faridmehr, I. (2016), "Performance of steel beams strengthened with pultruded CFRP plate under various exposures", Steel Compos. Struct., Int. J., 20(5), 999-1022. http://dx.doi.org/10.12989/scs.2016.20.5.999
  27. Gong, X.J., Cheng, P., Aivazzadeh, S. and Xiao, X. (2015), "Design and optimization of bonded patch repairs of laminated composite structures", J. Compos. Struct., 123, 292-300. https://doi.org/10.1016/j.compstruct.2014.12.048
  28. Haedir, J. and Zhao, X.L. (2012), "Design of CFRP-strengthened steel CHS tubular beams", J. Constr. Steel Res., 72, 203-218. https://doi.org/10.1016/j.jcsr.2011.12.004
  29. Haedir, J., Zhao, X.L., Bambach, M.R. and Grzebieta, R.H. (2010), "Analysis of CFRP externally-reinforced steel CHS tubular beams", J. Compos. Struct., 92, 2992-3001. https://doi.org/10.1016/j.compstruct.2010.05.012
  30. Harald, O., Dag, M.G., Jan, R.W. and Geir, O.G. (2012), "Predicting failure of bonded patches using a fracture mechanics approach", Int. J. Adhes. Adhes., 37, 102-111. https://doi.org/10.1016/j.ijadhadh.2012.01.015
  31. Hui-Huan, M., Ali, M.I., Feng, F. and Guy, O.A. (2015), "An experimental and numerical study of a semi-rigid bolted-plate connections (BPC)", Thin-Wall. Struct., 88, 82-89. https://doi.org/10.1016/j.tws.2014.11.011
  32. Iftekharul, A.M. and Sabrina, F. (2015), "Numerical studies on CFRP strengthened steel columns under transverse impact", J. Compos. Struct., 120, 428-441. https://doi.org/10.1016/j.compstruct.2014.10.022
  33. Jun, D. and Marcus, M.K.L. (2007), "Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate", J. Compos. Struct., 78, 232-242. https://doi.org/10.1016/j.compstruct.2005.09.004
  34. Kambiz, N., Ramli, S. and Mohd, Z.J. (2012), "Failure analysis and structural behaviour of CFRP strengthened steel I-beams", J. Constr. Build. Mater., 30, 1-9. https://doi.org/10.1016/j.conbuildmat.2011.11.009
  35. Karatzas, V., Kotsidis, E. and Tsouvalis, N. (2013), "An Experimental and Numerical Study of Corroded Steel Plates Repaired with Composite Patches", Proceedings of the 4th International Conference on Marine Structures, MARSTRUCT 2013, Espoo, Finland.
  36. Kotsidis, E.A., Kouloukouras, I.G. and Tsouvalis, N.G. (2014), "Finite element parametric study of a composite-to-steel-joint", In: Maritime Technology and Engineering, Taylor & Francis Group, London, UK, pp. 627-635.
  37. Ma, H.H., Issa, A.M., Fan, F. and Adeoti, G.O. (2015), "An experimental and numerical study of a semi-rigid bolted-plate connections (BPC)", Thin-Wall. Struct., 88, 82-89. https://doi.org/10.1016/j.tws.2014.11.011
  38. Mahdi, R.S. and Zahiraniza, M. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., Int. J., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151
  39. Mohamed, E. (2014), "CFRP strengthening and rehabilitation of degraded steel welded RHS beams under combined bending and bearing", Thin-Wall. Struct., 77, 86-108. https://doi.org/10.1016/j.tws.2013.12.002
  40. Mohammed, H.S., Essam, G.S. and Ahmed, F.H. (2017), "Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams", Steel Compos. Struct., Int. J., 23(4), 385-397. https://doi.org/10.12989/scs.2017.23.4.385
  41. Papanikos, P., Tserpes, K.I., Labeas, G. and Pantelakis, S.P. (2005), "Progressive damage modelling of bonded composite repairs", J. Theor. Appl. Fract. Mech., 43, 189-198. https://doi.org/10.1016/j.tafmec.2005.01.004
  42. Photiou, N.K., Hollaway, L.C. and Chryssanthopoulos, M.K. (2006), "Strengthening of an artificially degraded steel beam utilising a carbon/glass composite system", J. Constr. Build. Mater., 20, 11-21. https://doi.org/10.1533/9781845690649.3.274
  43. Pouria, T.A., Saeid, S., Vaclav, K. and Habiba, B. (2015), "Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model", J. Mech. Behav. Biomed. Mater., 41, 56-67. https://doi.org/10.1016/j.jmbbm.2014.09.019
  44. Stacey, A. and Birkinshaw, M. (2008), "Life Extension Issues for Aging Offshore Installations", Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2008), Estoril, Portugal.
  45. Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of CFST members strengthened using CFRP Composites", Steel Compos. Struct., Int. J., 15(6), 623-643. https://doi.org/10.12989/scs.2013.15.6.623
  46. Suzan, A.A.M. (2018), "Experimental and FE investigation of repairing deficient square CFST beams using FRP", Steel Compos. Struct., Int. J., 29(2), 187-200. https://doi.org/10.12989/scs.2018.29.2.187
  47. Tavakkolizadeh, M. and Saadatmanesh, H. (2003), "Repair of damaged steel-concrete composite girders using carbon fiberreinforced polymer sheets", J. Compos. Constr., 7(4), 311-322. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(311)
  48. Teng, J.G., Fernando, D. and Yu, T. (2015), "Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates", J. Eng. Struct., 86, 213-224. https://doi.org/10.1016/j.engstruct.2015.01.003
  49. Theisen, S.A. and Keller, M.W. (2016), "Comparison of Patch and Fully Encircled Bonded Composite Repair", Mech. Compos. Multi-funct. Mater., 7, 101-106. https://doi.org/10.1007/978-3-319-41766-0_11
  50. Tsouvalis, N.G., Mirisiotis, L.S. and Tsiourva, T.E. (2008), "Experimental Investigation of Composite Patch Reinforced Corroded Steel Plates in Static Loading", Proceedings of the 13th European Conference on Composite Materials (ECCM-13) Stockholm, Sweden.
  51. Wu, C., Zhao, X., Duan, W.H. and Al-Mahaidi, R. (2012), "Bond characteristics between ultrahigh modulus CFRP laminates and steel", Thin-Wall. Struct., 51, 147-157. https://doi.org/10.1016/j.tws.2011.10.010
  52. Yail, J.K. and Garrett, B. (2011), "Interaction between CFRPrepair and initial damage of wide-flange steel beams subjected to three-point bending", J. Compos. Struct., 93(8), 1986-1996. https://doi.org/10.1016/j.compstruct.2011.02.024
  53. Yail, J.K. and Kent, A.H. (2011), "Fatigue behavior of damaged steel beams repaired with CFRP strips", J. Eng. Struct.res, 33, 1491-1502. https://doi.org/10.1016/j.engstruct.2011.01.019
  54. Yail, J.K. and Kent, A.H. (2012), "Predictive response of notched steel beams repaired with CFRP strips including bond-slip behavior", J. Struct. Stabil. Dyn., 12(1), 1-21. https://doi.org/10.1142/S0219455412004628
  55. Zhou, H., Attard, T.L., Wang, Y., Wang, J.A. and Ren, F. (2013), "Rehabilitation of notch damaged steel beams using a carbon fiber reinforced hybrid polymeric-matrix composite", J. Compos. Struct., 106, 690-702. https://doi.org/10.1016/j.compstruct.2013.07.001

Cited by

  1. Seismic performance of steel columns corroded in general atmosphere vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.217
  2. Predicting seismic performance of locally corroded steel box-section piers vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.709