Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.1.127

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch  

Setvati, Mahdi Razavi (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS)
Mustaffa, Zahiraniza (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS)
Publication Information
Steel and Composite Structures / v.32, no.1, 2019 , pp. 127-139 More about this Journal
Abstract
Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.
Keywords
CFRP; patch; repair; circular hollow sectional steel beam; corrosion;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Blanco, N. (2012), "Failure criteria for composite materials", Presentation; Universitat de Girona, Spain.
2 Burlovic, D., Milat, A., Balunovic, M., Frank, D., Kotsidis, E.A., Kouloukouras, I.G. and Tsouvalis, N.G. (2016), "Finite element analysis of composite-to-steel type of joint for marine industry", J. Weld. World, 60(5), 859-867. https://doi.org/10.1007/s40194-016-0343-7   DOI
3 CAE Associates (2012), ANSYS Cohesive Zone Modeling; Website of CAE Associates. URL: https://caeai.com/ansys-training
4 Campilho, R.D.S.G., Moura, M.F.S.F. and Domingues, J.J.M.S. (2008), "Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs", Int. J. Solids Struct., 45(5), 1497-1512. https://doi.org/10.1016/j.ijsolstr.2007.10.003   DOI
5 Chen, T., Qi, M., Gu, X.L. and Yu, Q.Q. (2015), "Flexural strength of carbon fiber reinforced polymer repaired cracked rectangular hollow section steel beams", J. Polym. Sci. http://dx.doi.org/10.1155/2015/204861
6 Da Silva, L.F. and Campilho, R.D. (2012), Advances in Numerical Modelling of Adhesive Joints, Springer.
7 Deng, J. and Lee, M.M.K. (2009), "Adhesive bonding in steel beams strengthened with CFRP", J. Struct. Build., 162, 241-249. https://doi.org/10.1680/stbu.2009.162.4.241   DOI
8 Ephrem, A. and Akbar, I. (2012), "The flexural behaviour of tubular steel member strengthened with CFRP", Proceedings of 8th Asia Pacific Structural Engineering and Construction Conference and 1st International Conference for Civil Engineering Research, Surabaya, Indonesia.
9 Eurocode 3 (2005), Design of Steel Structures-Parts 1-8: Design of Joints (BSEN 1993-1-8:2005), Standards Policy and Strategy Committee.
10 Faris, A.U. and Mehtab, A. (2015), "Steel-CFRP composite and their shear response as vertical stirrup in beams", Steel Compos. Struct., Int. J., 18(5), 1145-1160. http://dx.doi.org/10.12989/scs.2015.18.5.1145   DOI
11 Fernando, D. (2010), "Bond Behaviour and Debonding Failures in CFRP-strengthened Steel Structures", Ph.D. Thesis; Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong, China.
12 Fernando, D., Yu, T., Teng, J.G., and Zhao, X.L. (2009), "CFRP strengthening of rectangular steel tubes subjected to end bearing loads: Effect of adhesive properties and finite element modelling", Thin-Wall. Struct., 47, 1020-1028. https://doi.org/10.1016/j.tws.2008.10.008   DOI
13 Gong, X.J., Cheng, P., Aivazzadeh, S. and Xiao, X. (2015), "Design and optimization of bonded patch repairs of laminated composite structures", J. Compos. Struct., 123, 292-300. https://doi.org/10.1016/j.compstruct.2014.12.048   DOI
14 Fernando, D., Yu, T. and Teng, J.G. (2015), "Behavior and modeling of CFRP-strengthened rectangular steel tubes subjected to a transverse end bearing load", Int. J. Struct. Stabil. Dyn., 15(8). https://doi.org/10.1142/S0219455415400313   DOI
15 Galal, K., Seif, E.H.M. and Tirca, L. (2012), "Flexural Performance of Steel Girders Retrofitted Using CFRP Materials", J. Compos. Constr., 16(3), 265-276. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000264   DOI
16 Gholami, M., Mohd S.A.R., Marsono, A.K., Tahir, M.M. and Faridmehr, I. (2016), "Performance of steel beams strengthened with pultruded CFRP plate under various exposures", Steel Compos. Struct., Int. J., 20(5), 999-1022. http://dx.doi.org/10.12989/scs.2016.20.5.999   DOI
17 Hui-Huan, M., Ali, M.I., Feng, F. and Guy, O.A. (2015), "An experimental and numerical study of a semi-rigid bolted-plate connections (BPC)", Thin-Wall. Struct., 88, 82-89. https://doi.org/10.1016/j.tws.2014.11.011   DOI
18 Haedir, J. and Zhao, X.L. (2012), "Design of CFRP-strengthened steel CHS tubular beams", J. Constr. Steel Res., 72, 203-218.   DOI
19 Haedir, J., Zhao, X.L., Bambach, M.R. and Grzebieta, R.H. (2010), "Analysis of CFRP externally-reinforced steel CHS tubular beams", J. Compos. Struct., 92, 2992-3001.   DOI
20 Harald, O., Dag, M.G., Jan, R.W. and Geir, O.G. (2012), "Predicting failure of bonded patches using a fracture mechanics approach", Int. J. Adhes. Adhes., 37, 102-111.   DOI
21 Iftekharul, A.M. and Sabrina, F. (2015), "Numerical studies on CFRP strengthened steel columns under transverse impact", J. Compos. Struct., 120, 428-441. https://doi.org/10.1016/j.compstruct.2014.10.022   DOI
22 Kotsidis, E.A., Kouloukouras, I.G. and Tsouvalis, N.G. (2014), "Finite element parametric study of a composite-to-steel-joint", In: Maritime Technology and Engineering, Taylor & Francis Group, London, UK, pp. 627-635.
23 Jun, D. and Marcus, M.K.L. (2007), "Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate", J. Compos. Struct., 78, 232-242. https://doi.org/10.1016/j.compstruct.2005.09.004   DOI
24 Kambiz, N., Ramli, S. and Mohd, Z.J. (2012), "Failure analysis and structural behaviour of CFRP strengthened steel I-beams", J. Constr. Build. Mater., 30, 1-9. https://doi.org/10.1016/j.conbuildmat.2011.11.009   DOI
25 Karatzas, V., Kotsidis, E. and Tsouvalis, N. (2013), "An Experimental and Numerical Study of Corroded Steel Plates Repaired with Composite Patches", Proceedings of the 4th International Conference on Marine Structures, MARSTRUCT 2013, Espoo, Finland.
26 Mohammed, H.S., Essam, G.S. and Ahmed, F.H. (2017), "Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams", Steel Compos. Struct., Int. J., 23(4), 385-397. https://doi.org/10.12989/scs.2017.23.4.385   DOI
27 Ma, H.H., Issa, A.M., Fan, F. and Adeoti, G.O. (2015), "An experimental and numerical study of a semi-rigid bolted-plate connections (BPC)", Thin-Wall. Struct., 88, 82-89. https://doi.org/10.1016/j.tws.2014.11.011   DOI
28 Mahdi, R.S. and Zahiraniza, M. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., Int. J., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151
29 Mohamed, E. (2014), "CFRP strengthening and rehabilitation of degraded steel welded RHS beams under combined bending and bearing", Thin-Wall. Struct., 77, 86-108. https://doi.org/10.1016/j.tws.2013.12.002   DOI
30 Papanikos, P., Tserpes, K.I., Labeas, G. and Pantelakis, S.P. (2005), "Progressive damage modelling of bonded composite repairs", J. Theor. Appl. Fract. Mech., 43, 189-198. https://doi.org/10.1016/j.tafmec.2005.01.004   DOI
31 Photiou, N.K., Hollaway, L.C. and Chryssanthopoulos, M.K. (2006), "Strengthening of an artificially degraded steel beam utilising a carbon/glass composite system", J. Constr. Build. Mater., 20, 11-21. https://doi.org/10.1533/9781845690649.3.274   DOI
32 Pouria, T.A., Saeid, S., Vaclav, K. and Habiba, B. (2015), "Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model", J. Mech. Behav. Biomed. Mater., 41, 56-67. https://doi.org/10.1016/j.jmbbm.2014.09.019   DOI
33 Tavakkolizadeh, M. and Saadatmanesh, H. (2003), "Repair of damaged steel-concrete composite girders using carbon fiberreinforced polymer sheets", J. Compos. Constr., 7(4), 311-322. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(311)   DOI
34 Stacey, A. and Birkinshaw, M. (2008), "Life Extension Issues for Aging Offshore Installations", Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2008), Estoril, Portugal.
35 Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of CFST members strengthened using CFRP Composites", Steel Compos. Struct., Int. J., 15(6), 623-643. https://doi.org/10.12989/scs.2013.15.6.623   DOI
36 Suzan, A.A.M. (2018), "Experimental and FE investigation of repairing deficient square CFST beams using FRP", Steel Compos. Struct., Int. J., 29(2), 187-200. https://doi.org/10.12989/scs.2018.29.2.187
37 Teng, J.G., Fernando, D. and Yu, T. (2015), "Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates", J. Eng. Struct., 86, 213-224. https://doi.org/10.1016/j.engstruct.2015.01.003   DOI
38 Wu, C., Zhao, X., Duan, W.H. and Al-Mahaidi, R. (2012), "Bond characteristics between ultrahigh modulus CFRP laminates and steel", Thin-Wall. Struct., 51, 147-157. https://doi.org/10.1016/j.tws.2011.10.010   DOI
39 Theisen, S.A. and Keller, M.W. (2016), "Comparison of Patch and Fully Encircled Bonded Composite Repair", Mech. Compos. Multi-funct. Mater., 7, 101-106. https://doi.org/10.1007/978-3-319-41766-0_11
40 Tsouvalis, N.G., Mirisiotis, L.S. and Tsiourva, T.E. (2008), "Experimental Investigation of Composite Patch Reinforced Corroded Steel Plates in Static Loading", Proceedings of the 13th European Conference on Composite Materials (ECCM-13) Stockholm, Sweden.
41 Yail, J.K. and Garrett, B. (2011), "Interaction between CFRPrepair and initial damage of wide-flange steel beams subjected to three-point bending", J. Compos. Struct., 93(8), 1986-1996. https://doi.org/10.1016/j.compstruct.2011.02.024   DOI
42 Yail, J.K. and Kent, A.H. (2011), "Fatigue behavior of damaged steel beams repaired with CFRP strips", J. Eng. Struct.res, 33, 1491-1502. https://doi.org/10.1016/j.engstruct.2011.01.019   DOI
43 Yail, J.K. and Kent, A.H. (2012), "Predictive response of notched steel beams repaired with CFRP strips including bond-slip behavior", J. Struct. Stabil. Dyn., 12(1), 1-21. https://doi.org/10.1142/S0219455412004628   DOI
44 Zhou, H., Attard, T.L., Wang, Y., Wang, J.A. and Ren, F. (2013), "Rehabilitation of notch damaged steel beams using a carbon fiber reinforced hybrid polymeric-matrix composite", J. Compos. Struct., 106, 690-702. https://doi.org/10.1016/j.compstruct.2013.07.001   DOI
45 Allan, M., Chamila, S., Warna, K., Lance, M.G. and Paul, F. (2016), "Pre-impregnated carbon fibre reinforced composite system for patch repair of steel I-beams", J. Constr. Build. Mater., 105, 365-376. https://doi.org/10.1016/j.conbuildmat.2015.12.172   DOI
46 Abdullah, H.A., Klaiber, F.W. and Wipf, T.J. (2004), "Repair of steel composite beams with carbon fiber-reinforced polymer plates", J. Compos. Constr., 8(2), 163-172. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(163)   DOI
47 ACI (American Concrete Institute) (2007), Report on fiber reinforced polymer (FRP) reinforcement for concrete structures (ACI-440R-07); ACI Committee 440 (Fiber Reinforced Polymer Reinforcement), USA.
48 Ahmed, W.A.Z., Wan, H.W.B., Azrul, A.M. and Qahtan, A.H. (2015), "Finite element analysis of square CFST beam strengthened by CFRP composite material", Thin-Wall. Struct., 96, 348-358. https://doi.org/10.1016/j.tws.2015.08.019   DOI
49 Ahmed, W.A.Z., Wan, H.W.B., Azrul, A.M. and Salam, J.H. (2017), "Rehabilitation and strengthening of high-strength rectangular CFST beams using a partial wrapping scheme of CFRP sheets: Experimental and numerical study", Thin-Wall. Struct., 114, 80-91. https://doi.org/10.1016/j.tws.2017.01.028   DOI
50 Akbar, I., Oehlers, D.J. and Ali, M.M. (2010), "Derivation of the bond-slip characteristics for FRP plated steel members", J. Constr. Steel Res., 66, 1047-1056. https://doi.org/10.1016/j.jcsr.2010.03.003   DOI
51 Amer, H. (2014), "Crack-Dependent Response of Structural Steel Members Repaired with CFRP", Ph.D. Thesis; North Dakota State University, ND, USA.
52 Amer, H., Yail, J.K. and Siamak, Y. (2011), "CFRP Repair of Steel Beams with Various Initial Crack Configurations", J. Compos. Constr., 15(6), 952-962. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000223   DOI
53 Anyfantis, K.A. (2012), "Finite element predictions of compositeto-metal bonded joints with ductile adhesive materials", J. Compos. Struct., 94, 2632-2639. https://doi.org/10.1016/j.compstruct.2012.03.002   DOI
54 ANSYS Inc. (2014), ANSYS Composite PrepPost (ACP) Training. URL: https://support.ansys.com/AnsysCustomerPortal/en_us
55 ANSYS Inc. (2015), ANSYS Mechanical APDL Element Reference (V.15). URL: http://148.204.81.206/Ansys/150/ANSYS%20Mechanical%20APDL%20Element%20Reference.pdf