• Title/Summary/Keyword: composite function

Search Result 1,234, Processing Time 0.027 seconds

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

A Study on Squeal Noise Robustness Analysis to Improve Composite Brake Stability of High Performance and Eco-Friendly Vehicles (고성능 및 친환경 차량의 복합재 브레이크 안정감 향상을 위한 스퀼 노이즈 강건성 분석에 관한 연구)

  • Shim, J.H.;Lee, J.H.;Shin, U.H.;Lim, D.W.;Hyun, E.J.;Jeo, T.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.32-40
    • /
    • 2021
  • Composite material is very attractive because it has excellent mechanical property and is possible to lightweight due to the low density. However, composite material is less used compared to other systems in the chassis system because it is very hard to solve NVH problem when composite material is applied to vehicle. Especially, reducing squeal noise of composite brake system is essential to apply it to vehicle successfully. In this paper, we present a new solution to reduce squeal noise of composite brake system. To achieve this goal, we analyze main causes of noise using RCA (Root Cause Analysis), CA (Contradiction Analysis) and sequentially get IFR (Ideal Final Result) to solve the problem. Next, we define the function of composite brake system and derive control factors and noise factors. A variety of tests for factors like chamfer, slot, damping shim, underlayer of brake pad are done. In addition, we analyze level of contribution for control factors theoretically. Finally, we get the effective solution for reducing squeal noise.

HOW TO PREPARE FOR RETIREMENT? OPTIMAL SAVING, LABOR SUPPLY, AND INVESTMENT STRATEGY

  • Koo, Bon Cheon;Koo, Jisoo;Song, Hana;Yoon, Hyo-Bin;Kim, Min-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.283-294
    • /
    • 2014
  • In this paper we study consumption-labor supply decision of an agent who prepares for retirement at a known time in the future. The agent is assumed to have a preference which is represented by the von Neumann-Morgenstern utility function in which the felicity function has constant relative risk aversion over the composite of consumption and leisure. The composite is obtained by the Cobb-Douglas function. A general problem has been studied by Bodie et al. (2004). We contribute to the literature by deriving the Slutsky equations and conducting comparative statics. In particular, we show that wealth effect can exhibit an interesting property depending upon the time until retirement, as the interest rate increases.

RELATIVE (p, q) - 𝜑 ORDER BASED SOME GROWTH ANALYSIS OF COMPOSITE p-ADIC ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.361-370
    • /
    • 2021
  • Let 𝕂 be a complete ultrametric algebraically closed field and 𝓐 (𝕂) be the 𝕂-algebra of entire function on 𝕂. For any p-adic entire functions f ∈ 𝓐 (𝕂) and r > 0, we denote by |f|(r) the number sup {|f (x)| : |x| = r} where |·|(r) is a multiplicative norm on 𝓐 (𝕂). In this paper we study some growth properties of composite p-adic entire functions on the basis of their relative (p, q)-𝜑 order where p, q are any two positive integers and 𝜑 (r) : [0, +∞) → (0, +∞) is a non-decreasing unbounded function of r.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Face Verification System Using Optimum Nonlinear Composite Filter (최적화된 비선형 합성필터를 이용한 얼굴인증 시스템)

  • Lee, Ju-Min;Yeom, Seok-Won;Hong, Seung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • This paper addresses a face verification method using the nonlinear composite filter. This face verification process can be simple and speedy because it does not require any reprocessing such as face detection, alignment or cropping. The optimum nonlinear composite filter is derived by minimizing the output energy due to additive noise and an input scene while maintaining the outputs of training images constant. The filter is equipped with the discrimination capability and the robustness to additive noise by minimizing the outputs of the input scene and the noise, respectively. We build the nonlinear composite filter with two training images and compare the filter with the conventional synthetic discriminant function (SDF) filter. The receiver operating characteristics (ROC) curves are presented as a metric for the performance evaluation. According to the experimental results the optimum nonlinear composite filter is shown to be a robust scheme for face verification in low resolution and noise environments.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

An Assesment of the Gas Pipeline Reliability Using Corrosion based Composite Failure (부식기반 복합고장을 고려한 가스배관의 신뢰도 평가)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Woosik;Kim, Young-Pyo;Kim, Cheolman
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.739-754
    • /
    • 2019
  • Purpose: The purpose of this paper is to develop a reliability estimation procedure for the underground gas pipeline in the presence of corrosion defects. Methods: Corrosion is one of the major causes of the gas pipeline failure. Several failure forms caused by corrosion have been studied. Among them, small leak and burst are considered in this paper. The composite failure of the two is defined by limit state function, and it is expressed with pipe parameters. Given a modified corrosion dataset, in order to obtain reliability estimations, the method of first order and second moment is adopted because of its simplicity. The computation processes are conducted with MATLAB coding. Results: According to numerical results, the probability of composite failure is affected by both small leak and burst. In particular, when corrosion depth stays at low level, it is consistent with the probability of burst failure. On the contrary, it is more influenced by the small leak failure as corrosion depth is increasing. In such case, the probability of composite failure is fast approaching to the safety limit. Conclusion: By considering the composite failure, more practical predictions of remaining life can be obtained. The proposed method is useful for maintenance planning of the underground gas pipeline.