• Title/Summary/Keyword: composite films

Search Result 527, Processing Time 0.032 seconds

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.

Photocatalytic and Hydrophilic Properties or $TiO_2$/$Fe_2O_3$ Composite Films

  • Liu, Q.J.;L, Q.;Wu, X.H.;Zhang, G.Q.;Gao, Z.Q.;Chen, G.X.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.40-42
    • /
    • 2002
  • TiO$_2$/Fe$_2$O$_3$composite thin films were prepared on common glass substrates by sol-gel processing and dip-drawing method. The effect of Fe$_2$O$_3$content on the photocatalytic and hydrophilic properties of composite films was studied. The results indicate that the photocatalytic activities of composite TiO$_2$films are superior to that of pure TiO$_2$film, and the film containing 0.5% Fe$_2$O$_3$has the best photocatalytic activity. The hydrophilicity is difference with variant Fe$_2$O$_3$content, the films containing 0.05% ~0.1% Fe$_2$O$_3$have the best hydrophilicity and their contact angles are 0。.

  • PDF

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method (스프레이 코팅법으로 제조된 CNT/PVDF 압전 복합막의 자기분극 메커니즘)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.550-554
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Characterizations of optical properties and microstructures of composite $MgF_2-TiO_2$ films fabricated by ion assisted deposition (이온 보조 증착에 의해 제작된 $MgF_2-TiO_2$ 혼합 박막의 광학적, 구조적 특성 분석)

  • 성창민;반승일;김형근;김석원;한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.382-386
    • /
    • 1997
  • The composite $MgF_2$-$TiO_2$ films are fabricated by codeposition from two independent sources. To improve optical and mechanical properties of films, the films are prepared by ion-assisted deposition. Chemical compositions, optical properties and microstructures of the composite films were investigated. The chemical composition rates of Ti:Mg of $MgF_2$-$TiO_2$ composite films are nonlinearly varied according to the relative deposition rate. It is found that the refractive indices of the composite films decrease with increasing $MgF_2$ contents and can be fitted quite well with Drude's formula and that the microstructures of the composite films changes from an amorphous to crystalline with increasing $MgF_2$ mole fractions.

  • PDF

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Rice Protein Composite Films from Lodged Rice (도복미를 이용한 쌀 단백질 복합 필름의 제조)

  • Han, Youn-Jeong;Lee, Won-Jong;Shin, Jin-Chul;Kim, Young-Joon;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.559-564
    • /
    • 2010
  • This study was performed to extract rice protein from milled rice that is either lodged or unlodged, in order to prepare composite films by mixing the protein with curdlan or ${\kappa}$-carrageenan (3:0, 2:1, 1.5:1.5, 1:2, 0:3), and to compare the physical properties of the films. In the case of rice protein/curdlan composite films, tensile strengths increased with increasing curdlan content but water vapor permeabilities decreased, while, elongations showed a maximum at a mixing ratio of 1.5:1.5. In the case of rice protein/${\kappa}$-carrageenan composite films, tensile strengths increased with increasing ${\kappa}$-carrageenan content but elongations decreased, while water vapor permeabilities showed no tendency. Overall, there were no significant differences in the physical properties of composite films between lodged rice and unlodged rice.

Tribological Properties of Co-Sputtered $MoS_2$ Films

  • Sagara, K.;Yamazaki, T.;Nishimura, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.145-146
    • /
    • 2002
  • Tribological properties of co-sputtered Molybdenum disulfide $(MoS_2)/Carbon\;(C)$ films were studied and compared with those of sputtered $MoS_2$ films. Friction tests were carried out using pin-on-disk friction testers to evluated their friction and wear behaviors in a vacuum ($10^{-5}Pa$), air and humid air of 30, 50, 80% RH. $MoS_2/C$ (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than $MoS_2$ films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, $MoS_2/C$ composite films hardly showed good tribological properties.

  • PDF