Tribological Properties of Co-Sputtered MoS₂ Films

K. SAGARA1, T. YAMAZAKI1 and M.NISHIMURA2

¹Hosei University Graduate School 3-7-2 Kajinocho, Koganei, Tokyo, 182-8584, Japan ²Department of Mechanical Engineering, College of Engineering, Hosei University 3-7-2 Kajinocho, Koganei, Tokyo, 182-8584, Japan

Tribological properties of co-sputtered Molybdenum disulfide (MoS₂)/Carbon (C) films were studied and compared with those of sputtered MoS₂ films. Friction tests were carried out using pin-on-disk friction testers to evaluate their friction and wear behaviors in a vacuum (10⁻⁵ Pa), air and humid air of 30, 50, 80% RH.

 MoS_2/C (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than MoS_2 films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, MoS_2/C composite films hardly showed good tribological properties.

Keywords: Co-sputtering, Composite film, Molybdenum disulfide, Carbon

1. INTODUCTION

MoS₂ has widely been used as solid lubricant in space drive mechanisms. It shows excellent tribological performance in a vacuum, but not in dry and humid air. It was reported that co-sputtered films of MoS₂ with Au, Ti, Cr or WSe₂ presented good performances in humid air [1].

In this study, we tested co-sputtered films of MoS₂ with C in order to improve tribolpgical properties in air.

2. EXPERIMENTAL PROCEDURES

2.1 Specimens and Sputtering process

MoS₂/Carbon films were deposited on stainless steel disks made of SUS440C by RF magnetron sputtering apparatus schematically shown in Fig. 1. We deposited MoS₂/C films containing 8 to 31% Carbon. Sputtering duration was 90 minutes.

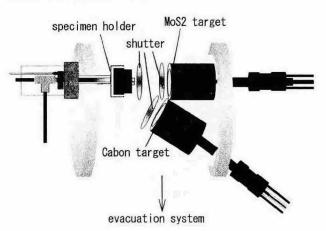


Fig. 1 Co-sputtering apparatus

2.2 Sliding Test

Friction tests were carried out using pin-on-disk friction testers. Test conditions are given in Tab. 1. Friction tests were carried out in a vacuum, dry and humid air (30, 50 and 80%RH). A SUS440C ball with a diameter of 5/16" was used as a slider. The wear life was defined as the number of revolutions until friction coefficient rose to 0.3 in a vacuum, and 0.4 in dry and humid air.

Tab. 1 Test conditions

Atmosphere	10 ⁻⁵ (Pa),
	dry air,
	30%,50%,80%(RH)
Temperature	Room
Load	9.8(N)
Sliding speed	0.5(m/s)
Sliding friction diameter	24(mm)
Detection of film rupture	Friction coefficient≧0.3

3. RESULTS

3.1 Behavior of friction coefficient

Typical behavior of friction coefficient observed in a vacuum is presented in Fig. 2. The friction coefficient of sputtered MoS_2 films obtained at stable stage is 0.02 to 0.05. MoS_2/C composite films, however, showed friction coefficient of about 0.02.

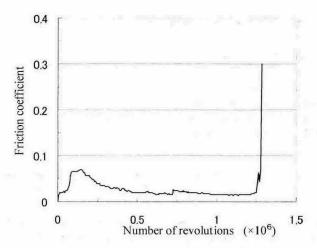


Fig. 2 Friction behavior of MoS2/C film

3.2 Results of pin-on-disk friction tests

Fig. 3 shows the ratio of wear life of each MoS_2/C composite films divided by that of MoS_2 films. The wear life was calculated under the assumption that film thickness was proportional to life. A denominator of the ordinate was the average wear life of $30~MoS_2$ films deposited under the optimum conditions obtained in advance in our laboratory. It was 0.71~million revolutions. In dry and humid air of 30, 50, 80% RH, the wear life of MoS_2 films was 0.20, 0.17, 0.16, 0.11~million revolutions respectively. In a vacuum, MoS_2/C (14%) composite films showed 9 times longer wear life than the MoS_2 films did. In humid air, MoS_2/C composite films, however, showed shorter wear life than the MoS_2 films did.

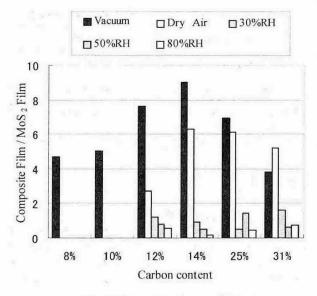
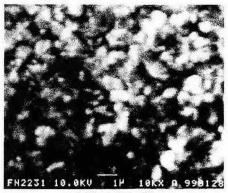



Fig. 3 The ratio of wear life

3.3 Surface observation by SEM

SEM pictures of the films are presented in Fig. 4. Fig. 4(a) is the surface of MoS_2 film and Fig. 4(b) is the surface of MoS_2/C (14%) composite film. Comparing figures 4(a) and 4(b), we observe that finer grains are deposited on the surface of 4(a) than the surface of 4 (b).

(a) The MoS2 film

(b) The MoS₂/C (14%) composite film Fig. 4 SEM images (\times 10.000)

4. CONCLUTIONS

Obtained results so far can be summarized as follows: MoS₂/C composite films gave longer wear life than MoS₂ films did in a vacuum and dry air, and lower friction coefficient of about 0.02 in a vacuum. MoS₂/C (14%) composite films showed 9 times longer wear life in a vacuum and 6 times longer in dry air than MoS₂ films did. But the life extension effect was not observed in humid air.

5. REFERENCES

 M. C. Simmonds., A. Savan., E. Pflüger., and H. Van Swygenhoven., .Mechanical and tribological performance of MoS₂ co-sputtered composites,. Surface and Coatings Tribology,. Vol.126, pp. 15-24, 2000