• 제목/요약/키워드: composite fibrous

검색결과 73건 처리시간 0.029초

Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Sakir Yazman;Mohammed Alsdudi;Lokman Gemi;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.217-238
    • /
    • 2023
  • In this study, a parametric study was performed considering material properties of concrete, material properties of steel, the number of longitudinal reinforcement (reinforcement ratio), CFRP ply orientations, a number of layers as variables by using ABAQUS. Firstly, the parameters used in the Hashin failure criteria were verified using four coupon tests of CFRP. Secondly, the numerical models of the beams strengthened by CFRP were verified using five experimental data. Finally, eighty numerical models and eighty analytic calculations were developed to investigate the effects of the aforementioned variables. The results revealed that in the case of using fibrous polymer to prevent shear failure, the variables related to reinforced concrete significantly affected the behavior of specimens, whereas the variables related to CFRP composite have a slight effect on the behavior of the specimens. As a result of numerical analysis, while the increase in the longitudinal tensile and compression reinforcement, load bearing capacity increases between 23.6%-70.7% and 5.6%-12.2%, respectively. Increase in compressive strength (29 MPa to 35 MPa) leads to a slight increase in the load-carrying capacity of the specimens between 4.6% and 7.2%. However, the decrease in the compressive strength (29 MPa to 20 MPa) significantly affected (between 6.4% and 8.1% decrease observed) the behavior of the specimens. As the yield strength increases or decreases, the capacity of specimens increase approximately 27.1% or decrease 12.1%. The effects of CFRP ply orientation results have been obtained as a negligible well approximately 3.7% difference. An increasing number of CFRP layers leads to almost no effect (approximately 2.8%) on the behavior of the specimen. Finally, according to the numerical analysis, the ductility values obtained between 4.0 and 6.9 indicate that the beams have sufficient ductility capacity.

해포석과 팽창진주암의 복합화에 의한 발포체 제조 (A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite)

  • 이철태;장문호;박태문
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.77-85
    • /
    • 2012
  • 팽창진주암(expanded perlite)과 섬유상 해포석(sepiolite)과의 복합화를 통해 유연성을 지닌 세라믹 발포체의 제조가능성을 조사하였다. 무기광물 섬유 해포석의 해섬처리는 팽창진주암과 해포석으로 이루어진 세라믹발포체의 제조를 위해 가장 중요한 전 처리공정이다. 해섬된 해포석과 팽창진주암은 혼합 교반되어 슬러리 상태로 이루어지며, 이 슬러리상의 복합물은 $300^{\circ}C$ 이하의 저온 열처리과정을 통해 형상화 및 발포화되어 괴상의 발포체로 제조된다. 슬러리상 복합물의 열처리공정은 슬러리 복합물 중에 잔존하는 수분의 증발단계, 일정발포온도에서 발포화제가 분해되어 진행되는 발포화단계 및 발포 후 잔류되는 유기물질의 분해제거단계를 포함하는 것으로 설계되어야 한다. 열처리 공정조건과 발포제는 상관성이 있으며 팽창진주암과 해포석섬유로 이루어진 슬러리상 혼합물의 발포에 적절한 발포제는 유기계 발포제가 적절하며 DSS (dioctyl sodium sulfosuccinte)가 효과적이었다.

ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가 (Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases)

  • 허윤선;이승신
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구 (A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System)

  • 김환국;권혜인;도규회
    • 한국염색가공학회지
    • /
    • 제34권2호
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

섬유 보강 복합재료의 미시역학적 거동 해석 (Analysis of Micromechanical Behavior for Fiber-Reinforced Composites)

  • 정재연;하성규
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1435-1450
    • /
    • 2004
  • The investigation, which includes the material homogenization and the calculation of local stress concentration of long-fibrous composites in a microscopic level, has been performed to analyze the behavior of fiber-reinforced composites by using finite element method. In order to carry out this study, the finite element models of composites have been generated by the idealized arrays as square and hexagonal-packed type. In the FE analysis, the boundary conditions of micromechanical finite element method(MFEM) have been defined and verified by comparing with the results from multi-cells, and the effective material properties of composites composed of graphite/epoxy have been also evaluated by rules of mixture. For acquiring the relation between the global and local behaviors of composites, the magnifications of strain, stress, and interfacial stress of composites subjected to a longitudinal and transverse loading respectively have been calculated. And the magnifications have been proposed as the stress concentration in the microscopic level at composite material.

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Study of texture, mechanical and electrical properties of cold drawn AGS alloy wire

  • Zidani, M.;Bessais, L.;Farh, H.;Hadid, M.D.;Messaoudi, S.;Miroud, D.;Loudjani, M.K.;Helbert, A.L.;Baudin, T.
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.745-752
    • /
    • 2016
  • An investigation has been done to study the evolution of the microstructure, mechanical and electrical properties of AlMgSi alloy destined for the transport of electric energy, in function of the deformation caused by the cold drawing process. We identified that drawing of aluminum wire causes development of a fibrous texture of type <111> and <100>. We notice also that the electrical resistivity and mechanical resistance increases with the increasing of the deformation level. Characterization methods used in this work is: The Electron Back Scattered Diffraction EBSD, X-Ray diffraction, Vickers microhardness, Tensile test, Measuring electrical resistivity, the Scanning Electron Microscope (SEM) and Energy Diffraction Spectrum (EDS).

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

LiF-maleic acid 첨가 calcium aluminate 골시멘트 및 CA-PMMA 복합 골시멘트가 백서 두개골 결손부 치유에 미치는 영향 (The effect of LiF-maleic acid added calcium aluminate hone cement & CA-PMMA composite bone cement on the healing of calvarial defect6))

  • 신정아;윤정호;오승한;백정원;최세영;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.753-767
    • /
    • 2002
  • The purpose of this study was to evaluate histologically the effect of LiF-maleic acid added calcium aluminate(LM-CA) bone cement & CA-PMMA composite bone cement on the healing of calvarial defect in Sprague-Dawley rats. The critical size defects were surgically produced in the calvarial bone using the 8mm trephine bur. The rats were divided in three groups : In the control group, nothing was applied into the defect of each rat. LM-CA bone cement was implanted in the experimental group 1 and CA-PMMA composite bone cement was implanted in the experimental group 2. Rats were sacrificed at 2, 8 weeks after surgical procedure. The specimens were examined by histologic analysis, especially about the bone-cement interface and the response of surrounding tissue. The results are as follows; 1. In the control group, inflammatory infiltration was observed at 2 weeks. At 8 weeks, periosteum and duramater were continuously joined together in the defect area. But the center of defect area was filled up with the loose connective tissue. 2. In the experimental group 1, the bonding between implanted bone cement and the existing bone was seen, which more increased in 8 weeks than 2 weeks. Inflammatory infiltration and the dispersion of implanted bone cement particles were seen in both 2 weeks and 8 weeks. 3. In the experimental group 2, implanted bone itself had a dimensional stability and no bonding between implanted bone cement and the existing bone was seen in both 2 weeks and 8 weeks. Implanted bone cement was encapsulated by fibrous connective tissue. In addition, inflammatory infiltration was seen around implanted bone cement. On the basis of these results, when LM-CA bone cement or CA-PMMA composite bone cement was implanted in rat calvarial defect, LM-CA bone cement can be used as a bioactive bone graft material due to ability of bonding to the existing bone and CA-PMMA can be used as a graft material for augmentation of bone-volume due to dimensional stability.