Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.9.531

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure  

Sarkar, Swapan Kumar (Biomedical Engineering and Materials Department, School of Medicine, Institute of Tissue Regeneration, Soonchunhyang University)
Lee, Byong Taek (Biomedical Engineering and Materials Department, School of Medicine, Institute of Tissue Regeneration, Soonchunhyang University)
Publication Information
Korean Journal of Materials Research / v.23, no.9, 2013 , pp. 531-536 More about this Journal
Abstract
This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.
Keywords
laminated composites; residual stress; multi-pass extrusion; micro-structure; alumina; zirconia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. T. Lee, A. Nishiyama, K. Hiraga, Mater. Trans. JIM, 34(88), 682 (1993).   DOI
2 A. H. D. Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Biomater., 23(3), 937 (2002).   DOI   ScienceOn
3 B. R. Lawn, Fracture of brittle solids. Cambridge University Press, London, 1993.
4 F. F. Lange, J. Am. Ceram. Soc., 72(1), 3-15 (1989).   DOI   ScienceOn
5 A. G. Evans, J. Am. Ceram. Soc., 73(2), 187 (1990).   DOI
6 P. F. Becher, J. Am. Ceram. Soc., 74(2), 255 (1991).   DOI
7 T. Chartier, J. L. Besson and P. Boch, Mechanical Properties of $ZrO_{2}$-$Al_{2}O_{3}$ Laminated Composites, Advances in Ceramics: Science and Technology of Zirconia III, Vol. 24B, ed. By S. Somiya, N. Yamamoto, and H. Yanagida, The American Ceramic Society, Westerville, 1988, 1131.
8 J. Requena, R. Moreno and J. S. Moya, J. Am. Ceram. Soc., 72(8), 1511 (1989).   DOI   ScienceOn
9 D. B. Marshall, J. J. Ratto and F. F. Lange, J. Am. Ceram. Soc., 74(12), 2979 (1991).   DOI
10 P. Sarkar, X. Huang and P. S. Nicholson, J. Am. Ceram. Soc., 75(10), 2907 (1992).   DOI
11 C. J. Russo, M. P. Harmer, H. M. Chan, and G. A. Miller, J. Am. Ceram. Soc., 75(12), 3396 (1992).   DOI
12 W. A. Cutler, F. W. Zok, F. F. Lange and P. G. Charalambides, J. Am. Ceram. Soc., 80(12), 3029 (2005).   DOI   ScienceOn
13 D. B. Marshall, J. J. Ratto, F. F. Lange, J. Am. Ceram. Soc., 74(12), 2979 (1991).   DOI
14 D. H. Kuo, W. M. Kriven, J. Am. Ceram. Soc., 80(9), 2421 (1997).
15 M. Oeschner, C. Hillman, F. F. Lange, J. Am. Ceram. Soc., 79(7), 1834 (1996).   DOI   ScienceOn
16 M. J. Melendo, F. G. Mora, A. D. Rodriguez, Acta. Mater., 48, 4715 (2000).   DOI   ScienceOn
17 T. Chartier, D. Merle, J. L. Besson, J. Eur. Ceram. Soc., 15, 101 (1995).   DOI   ScienceOn
18 O. N. Grigoriev, A. V. Karoteev, E. N. Maiboroda, I. L. Berezhinsky, B. K. Serdega, D. Y. Ostrovoi, V. G. Piskunov, Copm. Part B, 37, 530 (2006).   DOI   ScienceOn
19 S. K. Sarkar, B. T. Lee, Ceram. Inter., 29(8), 887 (2003).   DOI   ScienceOn