• Title/Summary/Keyword: compliant motion

Search Result 63, Processing Time 0.027 seconds

Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle (초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작)

  • Kang, Lae-Hyong;Jang, Hee-Suk;Leem, Ju-Young;Han, Jae-Hung
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper deals with a fabrication method of composite hinge mechanisms for flapping-wing micro air vehicles. The fabrication process includes curing process of Graphite/Epoxyprepregs, laser cutting for high fabrication repeatability, laminating of Graphite/Epoxy prepregs with Kapton film which is used for flexure, and so on. The fabricated hinge mechanism was attached with PUMPS actuators and the measured flapping angle was $173^{\circ}$ when driving voltage was 300V 170Hz.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Behavior Analysis of a Tension Leg Platform in Current and Waves (조류와 파랑 중의 인장계류식 해양구조물의 거동해석)

  • Lee, S.C.;Park, C.H.;Bae, S.Y.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.

The Output Analysis of Wrist Force/ Torque Sensor for SCARA Type Robots (SCARA형 로보트를 위한 손목 힘/토오크 센서의 출력 해석)

  • 고명삼;하인중;이범희;고낙용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.570-578
    • /
    • 1988
  • In order for a robot to carry out a precise assembly task with compliant motion, a force/torque sensor is needed. The output of the cross-bar structured force / torque sensor which is used in a peg-in-hole insertion task and attached to a SCARA type robot, is analzed. First, the relationship between the sensor outputs and the force / torque components obtained by the outputs is investigated. Second, in a peg-in-hole insertion task, the sensor outputs changing with the contact position of the peg and the hole, are analyzed. Also, the relative position of the peg and the hole is obtained from the sensor outputs. The peg-in-hole insertion task is successfully executed, using a SCARA type robot with a wrist force / torque sensor manufactured in our laboratory and the compliance algorithm from the results of this paper.

  • PDF

Video Quality Assessment based on Human Visual Characteristics (인간의 시각적 특성을 이용한 동영상 품질 측정 방식)

  • Park, Jin-Cheol;Lee, Kwang-Hyun;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.911-912
    • /
    • 2008
  • In the present paper, a new framework, which is called visual SSIM (VSSIM), is proposed by incorporating crucial human factors into the SSIM. The human factors are foveation, luminance, frequency and motion information. Subjective quality test compliant with the Video Quality Expert Group (VQEG) multimedia group test plan shows that the visual SSIM is more correlated with the subjective quality result than the conventional SSIM.

  • PDF

Stability of the Robot Compliant Motion control - Part 1 : Theory

  • Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.973-980
    • /
    • 1988
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with the environment. In part 1, we focus on the input ouput relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot(or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to any design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

  • PDF

Development of VVVF Inverter Control System for Propulsion System (차량용 VVVF 인버터 제어시스템 개발)

  • Kim, B.S.;Lee, K.C.;Lee, H.S.;Kim, S.W.;Park, Y.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.249-251
    • /
    • 1994
  • This paper introduces an implementation of high performance voltage source inverter system based on 16bit micro-processor and DSP for the application to modem rolling stock traction system. In contrast with other industry oriented inverter system, this system requires precise control action complying with various load condition and high overload capability. An asynchronous PWM generation and 3' pulse mode technology are adopted in order to improve compliant starting torque characteristics at starting phase and soft backward-forward starting motion.

  • PDF

Modeling and Countermeasure for Positioning Stage Base Vibration (위치결정 스테이지 베이스 진동 모델링 및 저감기법 개발)

  • Park, Ah-Yeong;Lim, Jae-Gon;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.476-484
    • /
    • 2010
  • Precise positioning stages are often employed for precise machinery. For the purpose of vibration isolation, these precise positioning stages are mounted on a heavy base structure which is supported by compliant springs. Then the base structure is subjected to residual vibration due to the reactive force and vertical moving load induced by the stage motion. This paper investigates the vibration behavior of a positioning stage base and the associated vibration suppression technique. A dynamic model is developed to investigate the base vibration due to the reactive force and moving load effects by the moving stage. An input shaping technique is also developed to suppress the residual vibrations in base structures. Simulations and experiments show that the developed dynamic model adequately represents the base vibration and that the proposed input shaping technique effectively removes the residual vibrations from the positioning stage base.

Stability of the Robot Compliant Motion Control, Part 1 : Theory (로보트의 Compliance 제어에서의 안정성:이론)

  • Sung-Kwun Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.941-949
    • /
    • 1989
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with environment. In part 1, we focus on the input output relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot (or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to and design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.