• Title/Summary/Keyword: complex signals

Search Result 570, Processing Time 0.026 seconds

Development of Automatic Operating System for Exit Door using RF (무선을 이용한 비상문 자동개폐 시스템 개발)

  • Lim Youn-Sub;Hwang Byung-Kon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, we develop a control system with fire receiver and emergency light that controls (manages) emergency door by wireless signals which prevents crime but also helps evacuate in (fire) emergency. This automatic door operator can be installed on any buildings which have a problem of opening or shutting emergency doors, and it is especially good for buildings with high fire vulnerabilities such as complex buildings, apartments and multistoried buildings without easy control of rooftop doors.

  • PDF

Detection of MIsfired Engine Cylinder by Using Directional Power Spectra of Vibration Signals (진동 신호의 방향 파워 스펙트럼을 이용한 엔진의 실화 실린더 탐지)

  • 한윤식;한우섭;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 1993
  • A new signal processing technique is applied to four-cylinder spark and compression ignition engines for the diagnosis of power faults inside the cylinders. This technique utilizes two-sided directional power spectra(예S) of complex vibration signals measured from engine blocks as the patterns for engine cylinder power faults. The dPSs feature that they give not only the frequency contents but also the directivity of the engine block motion. For the automatic detection/diagnosis of cylinder power faults, pattern recognition method using multi-layer neural networks is employed. Experimental results show that the sucess rate for diagnosis of cylinder power faults using dPSs is higher than that using the conventional one-sided power spectra. The proposed technique is also tested to check the robustness to the sensor position and the engine rotational speed.

  • PDF

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans

  • Kang, Chanhee;Avery, Leon
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.

Supervised text data augmentation method for deep neural networks

  • Jaehwan Seol;Jieun Jung;Yeonseok Choi;Yong-Seok Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.343-354
    • /
    • 2023
  • Recently, there have been many improvements in general language models using architectures such as GPT-3 proposed by Brown et al. (2020). Nevertheless, training complex models can hardly be done if the number of data is very small. Data augmentation that addressed this problem was more than normal success in image data. Image augmentation technology significantly improves model performance without any additional data or architectural changes (Perez and Wang, 2017). However, applying this technique to textual data has many challenges because the noise to be added is veiled. Thus, we have developed a novel method for performing data augmentation on text data. We divide the data into signals with positive or negative meaning and noise without them, and then perform data augmentation using k-doc augmentation to randomly combine signals and noises from all data to generate new data.

Optimal equivalent-time sampling for periodic complex signals with digital down-conversion

  • Kyung-Won Kim;Heon-Kook Kwon;Myung-Don Kim
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.238-249
    • /
    • 2024
  • Equivalent-time sampling can improve measurement or sensing systems because it enables a broader frequency band and higher delay resolution for periodic signals with lower sampling rates than a Nyquist receiver. Meanwhile, a digital down-conversion (DDC) technique can be implemented using a straightforward radio frequency (RF) circuit. It avoids timing skew and in-phase/quadrature gain imbalance instead of requiring a high-speed analog-to-digital converter to sample an intermediate frequency (IF) signal. Therefore, when equivalent-time sampling and DDC techniques are combined, a significant synergy can be achieved. This study provides a parameter design methodology for optimal equivalent-time sampling using DDC.

Development of a Stress ECG Analysis Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발)

  • 이경중;박광리
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-278
    • /
    • 1998
  • This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.

  • PDF

Post-GWAS Strategies

  • Kim, Sang-Soo;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • Genome-wide association (GWA) studies are the method of choice for discovering loci associated with common diseases. More than a thousand GWA studies have reported successful identification of statistically significant association signals in human genomes for a variety of complex diseases. In this review, I discuss some of the issues related to the future of GWA studies and their biomedical applications.

Estimation of Pump Induced Vibration Force Using Transfer Function (전달함수를 이용한 펌프(50Hp)의 진동가진력 산정)

  • 노병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF

Eddy Current Testing for Radiator Tubes Surrounded by Cooling Fins

  • Nagata, Shoichiro;Tsubusa, Yoshiaki;Enokizono, Masato
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.276-280
    • /
    • 2011
  • This paper presents a non-destructive evaluation study on a radiator with cooling fins as a complex shaped specimen. Radiator structures are used in various heat exchangers, such as automobiles, air conditioners and refrigerators. An eddy current testing method, namely multi-frequency excitation and spectrogram method (MFES), was employed to detect a defect on the radiator tube surrounded by cooling fins. Overall, experimental results suggested that the influence of cooling fin is not as noticeable as that of the defect signals.