DOI QR코드

DOI QR Code

Optimal equivalent-time sampling for periodic complex signals with digital down-conversion

  • Kyung-Won Kim (Terrestrial & Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Heon-Kook Kwon (Terrestrial & Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Myung-Don Kim (Terrestrial & Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2022.11.21
  • Accepted : 2023.03.06
  • Published : 2024.04.20

Abstract

Equivalent-time sampling can improve measurement or sensing systems because it enables a broader frequency band and higher delay resolution for periodic signals with lower sampling rates than a Nyquist receiver. Meanwhile, a digital down-conversion (DDC) technique can be implemented using a straightforward radio frequency (RF) circuit. It avoids timing skew and in-phase/quadrature gain imbalance instead of requiring a high-speed analog-to-digital converter to sample an intermediate frequency (IF) signal. Therefore, when equivalent-time sampling and DDC techniques are combined, a significant synergy can be achieved. This study provides a parameter design methodology for optimal equivalent-time sampling using DDC.

Keywords

Acknowledgement

This research was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT; no. 2020-0-00180, "A study for fundamental design and development of 300 GHz channel sounder").

References

  1. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond, IEEE Access 7 (2019), 78729-78757.
  2. R. Zhang, S. Wang, X. Lu, W. Duan, and L. Cai, Two-dimensional DoA estimation for multipath propagation characterization using the array response of PN-sequences, IEEE Trans. Wireless Commun. 15 (2016), no. 1, 341-356.
  3. Y. Samayoa, M. Kock, H. Blume, and J. Ostermann, Low-cost channel sounder design based on software-defined radio and OFDM, (Proc. IEEE 88th Vehicul. Technol. Conf. (VTC-Fall), Chicago, IL, USA), 2018, pp. 27-30.
  4. N. Hosseini and D. W. Matolak, Wide band channel characterization for low altitude unmanned aerial system communication using software defined radios, (Proc. ICNS Conf., Herndon, VA, USA), 2018, pp. 10-12.
  5. G. R. Jr, T. S. MacCartney, and A Rappaport, Flexible millimeter-wave channel sounder with absolute timing, IEEE J. Select. Areas Commun. 35 (2017), no. 6, 1402-1418.
  6. Y. Ji, W. Fan, and G. F. Pedersen, Channel characterization for wideband large-scale antenna systems based on a low-complexity maximum likelihood estimator, IEEE Trans. Wireless Commun. 17 (2018), no. 9, 6018-6028.
  7. C. E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), no. 1, 10-21.
  8. M. Brandolini, P. Rossi, D. Manstretta, and F. Svelto, Toward multistandard mobile terminals-fully integrated receivers requirements and architectures, IEEE Trans. Microwave Theory Techniq. 53 (2006), no. 3, 1026-1038.
  9. R. G. Vaughan, N. L. Scott, and D. R. White, The theory of bandpass sampling, IEEE Trans. Signal Process. 39 (1991), no. 9, 1973-1984.
  10. A. Mohammadian and C. Tellambura, RF impairments in wireless transceivers: phase noise, CFO, and IQ imbalance-a survey, IEEE Access 9 (2021), 111718-111791.
  11. C. Vogel, The impact of combined channel mismatch effects in time-interleaved ADCs, IEEE Trans. Instrum. Meas. 54 (2005), no. 1, 415-427.
  12. Y. R. Ramadan, H. Minn, and M. E. Abdelgelil, Precompensation and system parameters estimation for low-cost nonlinear tera-hertz transmitters in the presence of I/Q imbalance, IEEE Access 6 (2018), 51814-51833.
  13. H. Cao, A. S. Tehrani, C. Fager, T. Eriksson, and H. Zirath, I/Q imbalance compensation using a nonlinear modeling approach, IEEE Trans. Microwav. Theor. Techniq. 57 (2009), no. 3, 513-518.
  14. R. Sun, P. B. Papazian, J. Senic, Y. Lo, J.-K. Choi, K. A. Remley, and C. Centile, Design and calibration of a double-directional 60 GHz channel sounder for multipath component tracking, (Proc. 11th EuCAP, Paris, France), 2017, pp. 19-24.
  15. Z. Zhu, Y. Zhu, D. Li, and M. Liu, A TD-ADC for IR-UWB radars with equivalent sampling technology and 8-GS/s effective sampling rate, IEEE Trans. Circuit. Sys. II 68 (2021), no. 3, 888-892.
  16. Y.-P. Lin and P. P. Vaidyanathan, Periodically nonuniform sampling of bandpass signals, IEEE Trans. Circuit Sys. II Analog Digit. Sig. Process. 45 (1998), no. 3, 340-351.
  17. S. Rey, J. M. Eckhardt, B. Peng, K. Guan, and T. Kurner, Channel sounding techniques for applications in THz communications-a first correlation based channel sounder for ultra-wideband dynamic channel measurements at 300 GHz, (Proc. 9th ICUMT, Munich, Germany), 2017, pp. 6-8.
  18. G. Fettweis, M. Lohning, D. Petrovic, M. Windisch, P. Zillmann, and W. Rave, Dirty RF: a new paradigm, (Proc. IEEE 16th Int. Symp. Person. Indoor Mobile Radio Commun., Berlin, Germany), 2005, pp. 11-14.
  19. F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, 66 (1978), no. 1, 51-83.
  20. D. L. Donoho, Compressed sensing, IEEE Trans. Informat. Theory 52 (2006), no. 4, 1289-1306.
  21. Y. C. Jenq, Digital spectra of nonuniformly sampled signals: fundamentals and high-speed waveform digitizers, IEEE Trans. Instrum. Meas. 37 (1998), 245-251.
  22. S. S. Awad and M. F. Wagdy, More on jitter effects on sinewave measurements, IEEE Trans. Instrum. Meas. 40 (1991), 549-552.
  23. K. Takahashi, R. Roberts, Z. Jiang, and B. Memarzadeh, Statistical evaluation of signal-to-noise ratio and timing jitter in equivalent-time sampling signals, IEEE Trans. Instrum. Meas. 70 (2021), 1-4.