DOI QR코드

DOI QR Code

The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans

  • Kang, Chanhee (School of Biological Sciences, Seoul National University) ;
  • Avery, Leon (Department of Molecular Biology, UT Southwestern Medical Center)
  • Received : 2021.03.01
  • Accepted : 2021.04.08
  • Published : 2021.07.31

Abstract

Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.

Keywords

Acknowledgement

We thank Scott Cameron, Beth Levine, Melanie Cobb, Alexander Soukas, Merav Cohen, Niels Ringstad, members of the Avery and Cameron laboratories for helpful discussions, Cori Bargmann, Kevin Ashrafi, Maureen Barr, Mario De Bono, Merav Cohen for providing strains and plasmids, the C. elegans Genetics Center and S. Mitani (National Bioresource Project) for providing strains, Yuji Kohara (National Institute of Genetics, Japan) for providing flp-20 cDNA. We are indebted to Cori Bargmann for the discussion about GCY-28 and for sharing unpublished data. This work was supported by grants from the POSCO Science Fellowship of POSCO TJ Park Foundation, the SNU invitation program for the distinguished scholar, and the U.S. Public Health Service (HL46154).

References

  1. Ahima, R.S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., and Flier, J.S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature 382, 250-252. https://doi.org/10.1038/382250a0
  2. Anding, A.L. and Baehrecke, E.H. (2017). Cleaning house: selective autophagy of organelles. Dev. Cell 41, 10-22. https://doi.org/10.1016/j.devcel.2017.02.016
  3. Angelo, G. and Van Gilst, M.R. (2009). Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326, 954-958. https://doi.org/10.1126/science.1178343
  4. Badman, M.K., Pissios, P., Kennedy, A.R., Koukos, G., Flier, J.S., and Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426-437. https://doi.org/10.1016/j.cmet.2007.05.002
  5. Bechtold, D.A. and Luckman, S.M. (2007). The role of RFamide peptides in feeding. J. Endocrinol. 192, 3-15. https://doi.org/10.1677/JOE-06-0069
  6. Berthoud, H.R. and Morrison, C. (2008). The brain, appetite, and obesity. Annu. Rev. Psychol. 59, 55-92. https://doi.org/10.1146/annurev.psych.59.103006.093551
  7. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. https://doi.org/10.1093/genetics/77.1.71
  8. Byun, S., Seok, S., Kim, Y.C., Zhang, Y., Yau, P., Iwamori, N., Xu, H.E., Ma, J., Kemper, B., and Kemper, J.K. (2020). Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat. Commun. 11, 807. https://doi.org/10.1038/s41467-020-14384-z
  9. Chan, J.L., Heist, K., DePaoli, A.M., Veldhuis, J.D., and Mantzoros, C.S. (2003). The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409-1421. https://doi.org/10.1172/JCI200317490
  10. Chan, J.L. and Mantzoros, C.S. (2005). Role of leptin in energydeprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 366, 74-85. https://doi.org/10.1016/S0140-6736(05)66830-4
  11. Chen, Y.C., Chen, H.J., Tseng, W.C., Hsu, J.M., Huang, T.T., Chen, C.H., and Pan, C.L. (2016). A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Dev. Cell 39, 209-223. https://doi.org/10.1016/j.devcel.2016.08.021
  12. Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22. https://doi.org/10.14348/molcells.2020.2329
  13. Cohen, M., Reale, V., Olofsson, B., Knights, A., Evans, P., and de Bono, M. (2009). Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metab. 9, 375-385. https://doi.org/10.1016/j.cmet.2009.02.003
  14. Davis, J.F., Choi, D.L., and Benoit, S.C. (2010). Insulin, leptin and reward. Trends Endocrinol. Metab. 21, 68-74. https://doi.org/10.1016/j.tem.2009.08.004
  15. Douglas, S.J., Dawson-Scully, K., and Sokolowski, M.B. (2005). The neurogenetics and evolution of food-related behaviour. Trends Neurosci. 28, 644-652. https://doi.org/10.1016/j.tins.2005.09.006
  16. Fazeli, P.K., Lun, M., Kim, S.M., Bredella, M.A., Wright, S., Zhang, Y., Lee, H., Catana, C., Klibanski, A., Patwari, P., et al. (2015). FGF21 and the late adaptive response to starvation in humans. J. Clin. Invest. 125, 4601-4611. https://doi.org/10.1172/JCI83349
  17. Fielenbach, N. and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149-2165. https://doi.org/10.1101/gad.1701508
  18. Finn, P.F. and Dice, J.F. (2006). Proteolytic and lipolytic responses to starvation. Nutrition 22, 830-844. https://doi.org/10.1016/j.nut.2006.04.008
  19. Gerisch, B., Tharyan, R.G., Mak, J., Denzel, S.I., Popkes-van Oepen, T., Henn, N., and Antebi, A. (2020). HLH-30/TFEB is a master regulator of reproductive quiescence. Dev. Cell 53, 316-329.e5. https://doi.org/10.1016/j.devcel.2020.03.014
  20. Greer, E.R., Perez, C.L., Van Gilst, M.R., Lee, B.H., and Ashrafi, K. (2008). Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab. 8, 118-131. https://doi.org/10.1016/j.cmet.2008.06.005
  21. Inagaki, T., Lin, V.Y., Goetz, R., Mohammadi, M., Mangelsdorf, D.J., and Kliewer, S.A. (2008). Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 8, 77-83. https://doi.org/10.1016/j.cmet.2008.05.006
  22. Jo, H., Shim, J., Lee, J.H., Lee, J., and Kim, J.B. (2009). IRE-1 and HSP4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 9, 440-448. https://doi.org/10.1016/j.cmet.2009.04.004
  23. Kang, C. and Avery, L. (2008). To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4, 82-84. https://doi.org/10.4161/auto.5154
  24. Kang, C. and Avery, L. (2009a). Systemic regulation of autophagy in Caenorhabditis elegans. Autophagy 5, 565-566. https://doi.org/10.4161/auto.5.4.8171
  25. Kang, C. and Avery, L. (2009b). Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev. 23, 12-17. https://doi.org/10.1101/gad.1723409
  26. Kang, C., You, Y.J., and Avery, L. (2007). Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 21, 2161-2171. https://doi.org/10.1101/gad.1573107
  27. Kim, J., Lee, Y., Roh, K., Kim, M.S., and Kang, C. (2021). Targeting the stress support network regulated by autophagy and senescence for cancer treatment. Adv. Cancer Res. 150, 75-112. https://doi.org/10.1016/bs.acr.2021.01.003
  28. Kim, J., Lim, Y.M., and Lee, M.S. (2018). The role of autophagy in systemic metabolism and human-type diabetes. Mol. Cells 41, 11-17. https://doi.org/10.14348/MOLCELLS.2018.2228
  29. Kim, K. and Li, C. (2004). Expression and regulation of an FMRFamiderelated neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540-550. https://doi.org/10.1002/cne.20189
  30. Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356
  31. Kniazeva, M., Zhu, H., Sewell, A.K., and Han, M. (2015). A lipid-TORC1 pathway promotes neuronal development and foraging behavior under both fed and fasted conditions in C. elegans. Dev. Cell 33, 260-271. https://doi.org/10.1016/j.devcel.2015.02.015
  32. Konner, A.C. and Bruning, J.C. (2012). Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 16, 144-152. https://doi.org/10.1016/j.cmet.2012.07.004
  33. Kwon, Y., Kim, J.W., Jeoung, J.A., Kim, M.S., and Kang, C. (2017). Autophagy is pro-senescence when seen in close-up, but anti-senescence in longshot. Mol. Cells 40, 607-612. https://doi.org/10.14348/molcells.2017.0151
  34. Lee, C., Lamech, L., Johns, E., and Overholtzer, M. (2020). Selective lysosome membrane turnover is induced by nutrient starvation. Dev. Cell 55, 289-297.e4. https://doi.org/10.1016/j.devcel.2020.08.008
  35. Lee, Y., Kim, J., Kim, M.S., Kwon, Y., Shin, S., Yi, H., Kim, H., Chang, M.J., Chang, C.B., Kang, S.B., et al. (2021). Coordinate regulation of the senescent state by selective autophagy. Dev. Cell 56, 1512-1525.e7. https://doi.org/10.1016/j.devcel.2021.04.008
  36. Li, C. and Kim, K. (2008). Neuropeptides. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.142.1
  37. McKay, R.M., McKay, J.P., Avery, L., and Graff, J.M. (2003). C elegans: a model for exploring the genetics of fat storage. Dev. Cell 4, 131-142. https://doi.org/10.1016/S1534-5807(02)00411-2
  38. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391. https://doi.org/10.1126/science.1087782
  39. Miller, D.R. and Thorburn, A. (2021). Autophagy and organelle homeostasis in cancer. Dev. Cell 56, 906-918. https://doi.org/10.1016/j.devcel.2021.02.010
  40. Mizushima, N. (2007). Autophagy: process and function. Genes Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  41. Molinari, M. (2021). ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. Dev. Cell 56, 949-966. https://doi.org/10.1016/j.devcel.2021.03.005
  42. Olsen, L., Thum, E., and Rohner, N. (2021). Lipid metabolism in adaptation to extreme nutritional challenges. Dev. Cell 2021 Mar 9 [Epub]. https://doi.org/10.1016/j.devcel.2021.02.024
  43. Ortiz, C.O., Etchberger, J.F., Posy, S.L., Frokjaer-Jensen, C., Lockery, S., Honig, B., and Hobert, O. (2006). Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 173, 131-149. https://doi.org/10.1534/genetics.106.055749
  44. Park, J., Choi, W., Dar, A.R., Butcher, R.A., and Kim, K. (2019). Neuropeptide signaling regulates pheromone-mediated gene expression of a chemoreceptor gene in C. elegans. Mol. Cells 42, 28-35. https://doi.org/10.14348/molcells.2018.0380
  45. Sebastian, D. and Zorzano, A. (2020). Self-eating for muscle fitness: autophagy in the control of energy metabolism. Dev. Cell 54, 268-281. https://doi.org/10.1016/j.devcel.2020.06.030
  46. Shin, D.W. (2020). Lipophagy: molecular mechanisms and implications in metabolic disorders. Mol. Cells 43, 686-693. https://doi.org/10.14348/molcells.2020.0046
  47. Shin, H.R. and Zoncu, R. (2020). The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226-238. https://doi.org/10.1016/j.devcel.2020.06.010
  48. Soukas, A.A., Kane, E.A., Carr, C.E., Melo, J.A., and Ruvkun, G. (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 23, 496-511. https://doi.org/10.1101/gad.1775409
  49. Srinivasan, S., Sadegh, L., Elle, I.C., Christensen, A.G., Faergeman, N.J., and Ashrafi, K. (2008). Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab. 7, 533-544. https://doi.org/10.1016/j.cmet.2008.04.012
  50. Takayasu, S., Sakurai, T., Iwasaki, S., Teranishi, H., Yamanaka, A., Williams, S.C., Iguchi, H., Kawasawa, Y.I., Ikeda, Y., Sakakibara, I., et al. (2006). A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc. Natl. Acad. Sci. U. S. A. 103, 7438-7443. https://doi.org/10.1073/pnas.0602371103
  51. Texada, M.J., Malita, A., Christensen, C.F., Dall, K.B., Faergeman, N.J., Nagy, S., Halberg, K.A., and Rewitz, K. (2019). Autophagy-mediated cholesterol trafficking controls steroid production. Dev. Cell 48, 659-671.e4. https://doi.org/10.1016/j.devcel.2019.01.007
  52. Tsunozaki, M., Chalasani, S.H., and Bargmann, C.I. (2008). A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron 59, 959-971. https://doi.org/10.1016/j.neuron.2008.07.038
  53. Turpin, S.M., Ryall, J.G., Southgate, R., Darby, I., Hevener, A.L., Febbraio, M.A., Kemp, B.E., Lynch, G.S., and Watt, M.J. (2009). Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J. Physiol. 587, 1593-1605. https://doi.org/10.1113/jphysiol.2008.166033
  54. Van Gilst, M.R., Hadjivassiliou, H., and Yamamoto, K.R. (2005). A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc. Natl. Acad. Sci. U. S. A. 102, 13496-13501. https://doi.org/10.1073/pnas.0506234102
  55. Wang, T., Hung, C.C., and Randall, D.J. (2006). The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68, 223-251. https://doi.org/10.1146/annurev.physiol.68.040104.105739
  56. You, Y.J., Kim, J., Cobb, M., and Avery, L. (2006). Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab. 3, 237-245. https://doi.org/10.1016/j.cmet.2006.02.012
  57. Zachari, M., Gudmundsson, S.R., Li, Z., Manifava, M., Cugliandolo, F., Shah, R., Smith, M., Stronge, J., Karanasios, E., Piunti, C., et al. (2019). Selective autophagy of mitochondria on a ubiquitin-endoplasmic-reticulum platform. Dev. Cell 50, 627-643.e5. https://doi.org/10.1016/j.devcel.2019.06.016
  58. Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K., Kovacs, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., et al. (2015). Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9-27.

Cited by

  1. Methylmercury-Induced Metabolic Alterations in Caenorhabditis elegans Are Diet-Dependent vol.9, pp.11, 2021, https://doi.org/10.3390/toxics9110287