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Abstract
Genome-wide association (GWA) studies are the method 
of choice for discovering loci associated with common 
diseases. More than a thousand GWA studies have re-
ported successful identification of statistically significant 
association signals in human genomes for a variety of 
complex diseases. In this review, I discuss some of the 
issues related to the future of GWA studies and their bi-
omedical applications.
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Introduction
Soon after the completion of the Human Genome 
Project that established a reference human genome se-
quence, a massive discovery of sequence variations, es-
pecially of the type known as single nucleotide poly-
morphism (SNP), was initiated by the SNP Consortium 
(TSC) (Thorisson & Stein, 2003). After a few years of ef-
ficient international collaborative operations, TSC was 
succeeded by the International HapMap Project, which 
aims to catalog common variants in our genomes and 
investigate the linkage disequilibrium (LD) patterns be-
tween SNP markers (The International HapMap Consor-
tium, 2003). The knowledge on LD pattern and hap-
lotype structures quickly helped to design high density 
SNP chips for genome-wide scanning of disease asso-
ciated loci (Wang et al., 2005). Commercial availability of 
such SNP chips spurred GWA studies of a variety of 
common diseases involving many genes. Before the ad-
vent of GWA technologies, the complex diseases were 
studied by screening genetic association of the variants 
within or around a few genes of interest, which were se-
lected based on the researcher’s prior knowledge on 
the disease pathogenesis. Compared to this ‘candidate 
gene approach’, the GWA approach does not rely on a 
priori biological assumption and knowledge on the dis-

ease and thus has the potential to detect novel disease 
loci, providing a new insight and clues on the disease 
biology. This advantage has recently outweighed its high 
cost and GWA method has become the method of 
choice for studying common diseases involving multiple 
genes. Public databases now catalog more than a thou-
sand GWA publications reporting intriguing association 
of novel genomic loci with complex diseases (Hindorff et 
al., 2009). With these initial successful applications of 
the GWA method, it is time to plan the next phase of 
genetic association studies, as we now have the second 
wave of Next Generation Sequencing (NGS) tech-
nologies that are much more powerful than previous 
versions (Mardis, 2011). NGS will efficiently facilitate the 
detection of causal mutations that are hidden within the 
LD blocks encompassing the surrogate markers from 
GWAS. The 1000 Genomes Project aims to catalog less 
frequent SNPs (~1% MAF) from the reference pop-
ulations (http://www.1000genomes.org). By typing those 
mutations in the study samples, one can save the re-
sequencing efforts in the follow-up studies. It is certain 
that those studies involving the ethnic groups included 
in the 1000 Genomes Project will benefit from the 
project. However, what about the populations not in-
cluded in the project? In this essay, we will discuss 
some of the issues concerning the nature and future of 
genome-wide association study (GWAS), followed by a 
suggestion for the next phase research strategies.

Nature of GWAS Problems
GWAS utilizes high density SNP chips to scan the ge-
nome-wide genotype profiles of sample populations. The 
present day commercial SNP chips typically include an 
order of million markers. In a typical analysis setting, the 
genotype-phenotype association is assessed one by 
one for each marker. This translates to millions of in-
dependent statistical tests. In order to minimize false 
positives due to multiple testing, one typically imposes 
a very stringent cutoff for the statistical significance 
level. However, it is still imaginable that some false pos-
itives slip through the threshold. For example, there are 
a few orders of magnitude more markers than samples, 
and some peculiar sampling may cause bias in the pop-
ulation structure, causing spurious associations. In order 
to overcome such problems, the results from a GWAS 
are typically reexamined by a replication study employ-
ing a dataset from independent cohorts. In general 
strongly associated signals are well replicated in other 
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populations, while moderate ones are not so even within 
the same ethnic groups. We call the latter issue a ‘tip 
of an iceberg’ problem. Identification of the hits of mod-
erate signals tends to be sensitive to the threshold 
setting. While the association signal of a marker may be 
above the threshold in one population, it may be just 
below the threshold in another population. At the same 
time, we miss bulk of the genuine signals below the 
threshold. This is similar to the situation observed with 
the ‘tip of an iceberg’. Besides the difficulty in repli-
cating the original GWAS result in independent cohorts, 
small number of strong signal observed in GWAS hin-
ders both rich biological interpretation of the GWAS re-
sults and reasonable risk prediction based on geno-
types. This posed a serious threat to GWAS and has 
been the basis of wide-spread pessimism on the pros-
pect of common disease studies.

Missing Heritability
In late 2009, Manolio et al. published an article critically 
reviewing the issue of poor ability to explain phenotypic 
variation based on genotypes (Manolio et al., 2009). One 
of the traits given as an example in the review article 
was human height. The genetic contribution to its varia-
tion is known to be around 80%, while the combined al-
leles identified thus far explained only 5% of the pheno-
type variance, the rest being claimed as missing 
heritability. The review also speculated the potential fac-
tors contributing to the missing heritability. For example, 
they posit that rare or structural variants are not well 
represented in the commercial SNP chips, and that 
modeling epistatis of gene-gene interaction or in-
corporation of environmental factors may be necessary. 
Besides, they also argued that there may be many more 
weaker signals yet to be found. In order to discover 
them, much larger sample size will be required. Yang et 
al. reported a simulation result claiming that all the 
SNPs in the GWAS chip would collectively explain about 
half of the human height variation (Yang et al., 2010). In 
fact, a large-scale meta analysis combining 46 data sets 
comprising 183,727 European individuals identified hun-
dreds more variants related to human height and could 
explain up to 10% of its variation (GIANT Consortium, 
2010). This work confirmed the earlier premise that there 
are many more weaker signals yet to be found and one 
way to enhance the statistical power to discover them 
is by increasing the sample size. Although it is a prom-
ising option, not every trait can be studied in this way.

Pathway Analysis
While it is still a long way to go for useful risk prediction 

based on genotypes, the hefty number of genes whose 
genetic associations are newly identified by GWAS can 
provide novel insights regarding trait development or 
pathogenesis of disease traits. If hundreds of genes are 
identified by GWAS, gene ontology terms or pathways 
enriched among them can be identified in a similar man-
ner as well established in gene expression profile analy-
sis (Huang et al., 2009). This method is not applicable 
if only a handful of genes are identified from GWAS. In 
such cases, gene-set analysis (GSA) may be considered 
(Nam & Kim, 2008). GSA is well established in the area 
of gene expression analysis. Instead of selecting a set 
of genes passing a certain cutoff and looking for func-
tional terms commonly shared by the gene set, GSA 
checks a set-wise association score where the con-
tribution by all the member genes in the gene-set are 
summarized regardless of their significance level. It is 
important not to filter certain markers or genes based 
on their significance level. The rationale is as follows: if 
one wants to calculate a mean property and removes 
hits with low score values, the mean would be un-
necessarily inflated. If a biological pathway or functional 
module plays a significant role in the trait development, 
its set-wise association score would be significantly 
higher than those of the non-associated groups (Nam et 
al., 2010). Even if individual effect or signal may not be 
strong enough to pass the threshold, the collective con-
tributions from those genes may add up to surpass the 
random expectation. This approach offers a benefit of 
reaching out the ‘core of an iceberg’ without increasing 
the sample size. Recently, Wang et al., 2010. reviewed 
various computational methods that implemented path-
way analysis approach for GWAS (Wang et al., 2010). 
They suggest that pathway analysis may allow rich de-
scription of the biological mechanism behind the trait 
development in an unprecedented manner and has the 
potential to suggest therapeutic or diagnostic targets 
without delving into the specific identification of causal 
variants. Eric Lander, in his review of celebrating tenth 
anniversary of human genome sequencing, also illus-
trated several successful examples along this line where 
GWAS help to advance the biomedical applications 
(Lander, 2011).
  If the biological mechanisms are common for the 
same traits regardless of populations, GSA would yield 
highly replicating results, even in the cases where in-
dividual markers do not show correlative association 
across different populations. It would be interesting to 
see whether this is indeed the case with multi-pop-
ulation meta analysis data sets. It is also informative to 
know to what extent of ethnic groups we would expect 
that GSA give overlapping results. For example, may 
such a high overlap be expected within Asian pop-
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ulations only or even among Asian and Europeans?
  Now there are even bolder approaches that intend to 
integrate systems biology to genetics, called systems 
genetics (Butte et al., 2011). Instead of scoring a collec-
tive association of a predefined set of genes, this new 
approach tests the association of protein interaction or 
gene regulatory networks. While the two approaches 
may look similar, there is an important distinction. The 
former mainly relies on evidence collected from liter-
ature, and thus of highly reliable, but their coverage is 
rather low and the interaction context between genes 
are missing for some gene sets such as those based on 
gene ontology or molecular signatures. The latter may 
have the advantage of testing network properties that 
are likely dependent on the context of the trait, facili-
tated by the integration of various omics profiling data.

Longitudinal Cohorts
Tom Hudson, President and Scientific Director, Ontario 
Institute for Cancer Research, Toronto, Ontario, Canada, 
wrote in an essay celebrating tenth anniversary of ge-
nome sequencing that he would invest heavily in devel-
oping large clinical resources if he could move the clock 
back to 2001 when the initial draft of the human 
“reference” genome sequence was published (Hudson, 
2011). Once integrated with genomic technologies the 
cohorts annotated with ten years of detailed clinical his-
tory would have profound effect in understanding dis-
ease progression.

Personal Genomics
Introduction of NGS technologies has sparked the ge-
nome sequencing of individuals (Nature Editorial, 2010). 
There are now several so-called personal genome proj-
ects, such as the 1000 Genomes Project and the Perso-
nal Genome Project (http://www.personalgenomes.org). 
In the era of personal genomics, what would be the fu-
ture of GWAS? Some think that GWAS will be super-
seded by variant profiling based on NGS. Certainly high 
penetrant, monogenic, Mendelian diseases would benefit 
greatly from NGS, where comparative sequencing of af-
fected and unaffected from the closely related families 
would reveal the disease mutations. On the other hand, 
common, complex diseases require a large number of 
unrelated population samples to locate the statistically 
confident disease-causing loci. The current NGS tech-
nologies are too expensive to replace the traditional 
SNP chips in population genotyping. In addition, com-
putational cost and time for handling whole genome 
NGS data for the large number of samples required in 
GWAS would be prohibitive at the moment and within 

the foreseeable future. Ideally sequencing technology 
can detect novel mutations and profile known variants in 
one shot. However, a two step process would be more 
practical: (1) discovering novel mutations by sequencing; 
(2) follow-up genotyping of the variants by chip tech-
nology. One of the aims of the 1000 Genomes Project 
is to provide reference variant profiles for HapMap 
populations. For a given GWAS, one can look up the 
database to pick up the potential variants within the LD 
block of the association signals. The common-dis-
ease/common-variant hypothesis tells that if a dis-
ease-causing mutation has occurred one time in human 
history at a certain haplotype, it would be inherited by 
the descendants who carry the haplotype. On the other 
hand, those who do not carry this haplotype would be 
unaffected by the disease. While subsequent recombi-
nation would diversify the overall haplotype structure, 
the core haplotype around the disease-causing variant 
would be conserved. Therefore, it is important to identify 
the haplotypes associated with the trait of interest 
through GWAS and to infer the potential disease-caus-
ing variants from the NGS data that match those 
haplotypes. The success of this approach is then de-
pendent on whether the 1000 Genomes Project covers 
the samples whose haplotype structures are compatible 
with those of our GWAS subjects. At the moment, the 
1000 Genomes Project is partially complete and we 
need to wait more to answer this question for 
non-HapMap population GWAS.
  If we focus our attention to Korean GWAS issues, 
several options can be suggested. Since Korea is geo-
graphically between China and Japan and genetically al-
so Koreans are in between Chinese and Japanese pop-
ulations, we can wait until the 1000 Genomes Project 
produce sufficiently accurate and useful data for both 
Chinese and Japanese populations. Alternatively, we 
can pursue producing Korean reference whole genome 
sequences, for which the sampling object should be to 
maximize the genetic diversity among Koreans. The ex-
isting GWAS genotype data would facilitate such a sam-
ple selection process. In fact these two options are not 
mutually exclusive, rather complementary. For example, 
comparison of Korean reference genomes with those 
from the Chinese and Japanese of the 1000 Genomes 
Project would tell us how much reference sequencing 
among Koreans is necessary.

Conclusions
There has been widely known and somewhat accepted 
skepticism on GWAS. However, the recent progresses 
re-shed light on its potential. Recently NIH and NCI, 
USA funded several projects called the Post-GWA 
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Initiative (http://grants.nih.gov/grants/guide/rfa-files/RFA- 
CA-09-002.html). These projects (Monteiro et al., 2010), 
focusing on GWA studies of cancers, follow up the 
GWAS outcomes to pin-point the causal variants and 
understand how they influence disease development 
and progression. Bioinformatic computational tools 
would play important roles in prioritizing the potential 
causal variants through the prediction of the functional 
consequence of each variant and the analysis of the af-
fected pathways. Experimental validations employing 
both omics profiling and animal models are also planned. 
Much of the idea laid out in the projects share the same 
spirit with this essay.
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