• Title/Summary/Keyword: complex motion

Search Result 814, Processing Time 0.026 seconds

A Case Report of Complex Korean Medicine Treatment Application Including Chuna Manual Therapy for Functional Recovery After Sacroiliac Joint Fusion (천장관절융합술 후 기능 회복에 대한 추나요법을 포함한 한의복합치료 증례보고 1례)

  • Yun-Hee Han;Shin-Hyeok Park;Hyeon-jun Woo;Won-Bae Ha;Jung-Han Lee
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.17 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Objectives This case study aimed to investigate the effect of complex Korean medicine treatment including Chuna manual therapy on sacroiliac joint (SIJ) pain status post SIJ fusion with sacroiliac screw fixation. Methods Complex Korean medicine treatments including Chuna manual therapy were provided to patients with SIJ widening due to a traffic accident trauma. Measurement of range of motion and manual muscle test to evaluate functional activities of daily living was conducted before and after treatment. Moreover, outcome estimates were performed using the numeric rating scale, pain disability index, and EuroQol 5-dimension five-level questionnaire. Results After complex treatment, functional activities of daily living improved. Sacroiliac joint pain decreased and the quality-of-life score improved. Conclusions This study suggests that treatment with complex Korean medicine treatment including Chuna manual therapy may improve traumatic SIJ widening status post SIJ fusion. A postoperative rehabilitation protocol based on accumulated research results considering a multidisciplinary approach should be prepared to ensure holistic treatment.

Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment (가상현실 환경에서 3D 가상객체 조작을 위한 인터페이스와 인터랙션 비교 연구)

  • Park, Kyeong-Beom;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Recently immersive virtual reality (VR) becomes popular due to the advanced development of I/O interfaces and related SWs for effectively constructing VR environments. In particular, natural and intuitive manipulation of 3D virtual objects is still considered as one of the most important user interaction issues. This paper presents a comparative study on the manipulation and interaction of 3D virtual objects using different interfaces and interactions in three VR environments. The comparative study includes both quantitative and qualitative aspects. Three different experimental setups are 1) typical desktop-based VR using mouse and keyboard, 2) hand gesture-supported desktop VR using a Leap Motion sensor, and 3) immersive VR by wearing an HMD with hand gesture interaction using a Leap Motion sensor. In the desktop VR with hand gestures, the Leap Motion sensor is put on the desk. On the other hand, in the immersive VR, the sensor is mounted on the HMD so that the user can manipulate virtual objects in the front of the HMD. For the quantitative analysis, a task completion time and success rate were measured. Experimental tasks require complex 3D transformation such as simultaneous 3D translation and 3D rotation. For the qualitative analysis, various factors relating to user experience such as ease of use, natural interaction, and stressfulness were evaluated. The qualitative and quantitative analyses show that the immersive VR with the natural hand gesture provides more intuitive and natural interactions, supports fast and effective performance on task completion, but causes stressful condition.

Efficient Motion Information Representation in Splitting Region of HEVC (HEVC의 분할 영역에서 효율적인 움직임 정보 표현)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.485-491
    • /
    • 2012
  • This paper proposes 'Coding Unit Tree' based on quadtree efficiently with motion vector to represent splitting information of a Coding Unit (CU) in HEVC. The new international video coding, High Efficiency Video Coding (HEVC), adopts various techniques and new unit concept: CU, Prediction Unit (PU), and Transform Unit (TU). The basic coding unit, CU is larger than macroblock of H.264/AVC and it splits to process image-based quadtree with a hierarchical structure. However, in case that there are complex motions in CU, the more signaling bits with motion information need to be transmitted. This structure provides a flexibility and a base for a optimization, but there are overhead about splitting information. This paper analyzes those signals and proposes a new algorithm which removes those redundancy. The proposed algorithm utilizes a type code, a dominant value, and residue values at a node in quadtree to remove the addition bits. Type code represents a structure of an image tree and the two values represent a node value. The results show that the proposed algorithm gains 13.6% bit-rate reduction over the HM-1.0.

Definition and Application of a Layered Avatar Behavior Script Language for Reusability and Simplicity (재사용성 및 용이성을 위한 계층적 아바타 행위 스크립트 언어의 정의)

  • Kim Jae-Kyung;Choi Seung-Hyuk;Sohn Won-Sung;Lim Soon-Bum;Choy Yoon-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.455-476
    • /
    • 2006
  • An avatar script language consists of commands set which is used to control avatar behaviors in cyberspace. The script language should be abstract from complex low-level concepts, so that a user can write down a scenario script easily without concerning about physical motion parameters. Also, the script should be defined in a standard format and structure to allow reusing in various implementation tools. In this paper, a layered script language is proposed for avatar behavior representation and control, which consists of task-level behavior, high-level motion and primitive motion script language. The script language of each layer represents behavior elements for a scenario scripting interface, an avatar motion sequence, and geometric information of implementation environment, respectively. Therefore, a user can create a scenario script by abstract behavior interface and a script can be applied to various implementations by the proposed translating process. A presentation domain is chosen for applying the proposed script language and the implementation result shows that the script is flexibly applied in several applications.

A Temporal Error Concealment Technique Using The Adaptive Boundary Matching Algorithm (적응적 경계 정합을 이용한 시간적 에러 은닉 기법)

  • 김원기;이두수;정제창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.683-691
    • /
    • 2004
  • To transmit MPEG-2 video on an errorneous channel, a number of error control techniques are needed. Especially, error concealment techniques which can be implemented on receivers independent of transmitters are essential to obtain good video quality. In this paper, prediction of motion vector and an adaptive boundary matching algorithm are presented for temporal error concealment. Before the complex BMA, we perform error concealment by a motion vector prediction using neighboring motion vectors. If the candidate of error concealment is not satisfied, search range and reliable boundary pixels are selected by the temporal activity or motion vectors and a damaged macroblock is concealed by applying an adaptive BMA. This error concealment technique reduces the complexity and maintains a PSNR gain of 0.3∼0.7㏈ compared to conventional BMA.

Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces (조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kim, Young-Ik;Lee, Hee-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • In this study, transonic/supersonic nonlinear flutter analysis system of a complete aircraft including forced harmonic motion pf control surfaces has been effectively developed using the modified transonic small disturbance (TSD) equation. To consider the nonlinear effects, the coupled time marching method (CTM) combining computational structural dynamics (CFD) has been directly applied for aeroelastic computations. The grid system for a complex full aircraft configuration is effectively generated by the developed inhouse code. Intransonic and supersonic flight regimes, the characteristics of static and dynamic aeroelastic effect has been investigated for a complete aircraft model. Also, nonlinear flutter flight simulations for the forced harmonic motion of control surfaces are practically presented in detail.

Fast Inter Block Mode Decision Using Image Complexity in H.264/AVC (H.264/AVC에서 영상 복잡도를 이용한 고속 인터 블록 모드 결정)

  • Kim, Seong-Hee;Oh, Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.925-931
    • /
    • 2008
  • In video coding standard H.264/AVC, variable block size mode algorithm improves compression efficiency but has need of a large amount of computation for various block modes and mode decision. Meanwhile, decided inter block modes depend on the complexity of a block image, and then the more complex a macroblock is, the smaller its block size is. This paper proposes fast inter block mode decision algorithm. It limits valid block modes to the block modes with a great chance for decision using the image complexity and carries out motion estimation rate-distortion optimization with only the valid block modes. In addition to that, it applies fast motion estimation PDE to the valid block modes with only the $16{\times}16$ block mode. The reference software JM 9.5 was executed to estimate the proposed algorithm's performance. The simulation results showed that the proposed algorithm could save about 24.12% of the averaged motion estimation time while keeping the image quality and the bit rate to be -0.02dB and -0.12% on the average, respectively.

Trace of Moving Object using Structured Kalman Filter (구조적 칼만 필터를 이용한 이동 물체의 추적)

  • Jang, Dae-Sik;Jang, Seok-Woo;Kim, Gye-young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.319-325
    • /
    • 2002
  • Tracking moving objects is one of the most important techniques in motion analysis and understanding, and it has many difficult problems to solve. Especially, estimating and identifying moving objects, when the background and moving objects vary dynamically, are very difficult. It is possible under such a complex environment that targets may disappear totally or partially due to occlusion by other objects. The Kalman filter has been used to estimate motion information and use the information in predicting the appearance of targets in succeeding frames. In this paper, we propose another version of the Kalman filter, to be called structured Kalman filter, which can successfully work its role of estimating motion information under a deteriorating condition such as occlusion. Experimental results show that the suggested approach is very effective in estimating and tracking non-rigid moving objects reliably.

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

Effect of Neutron irradiation in $Fe_{81}B_{13.5}_Si{3.5}C_2$Amorphous Ribbon (비정질 $Fe_{81}B_{13.5}_Si{3.5}C_2$ 리본의 중성자 조사에 따른 자기적 특성변화)

  • 김효철;홍권표;김철기;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.49-52
    • /
    • 2000
  • The changes of magnetic properties in neutron irradiated F $e_{81}$ $B_{13.5}$S $i_{3.5}$ $C_2$ amorphous ribbon were studied by X-ray diffraction, hysteresis loop, temperature dependence of magnetization and complex permeability. The fluences of thermal ( $n_{th}$) and fast ( $n_{f}$) neutron were 6.95$\times$10$^{18}$ $n_{th}$ c $m^{-2}$ and 4.56$\times$10$^{16}$ $n_{f}$c $m^{-2}$ , respectively. The changes of XRD Profiles were not observable at the neutron irradiated sample. The complex permeability spectra showed that the permeability from domain wall motion decreased due to the increase of pinning force against domain motion by the neutron irradiation, and the relaxation frequency of rotational magnetization moved to higher frequency region. The measurement of hysteresis loop showed the increase of magnetic softness, related to rotational magnetization, but saturation magnetization was decreased in neutron irradiation sample. The Curie temperature was decreased in the neutron irradiated sample.e.e.e.

  • PDF