• 제목/요약/키워드: complex modes

검색결과 402건 처리시간 0.027초

형태론적 다중모드 2진 형상분해 알고리즘 (Algorithm of Morphological Multimode Binary Shape Decomposition)

  • 최종호
    • 전자공학회논문지S
    • /
    • 제36S권9호
    • /
    • pp.67-75
    • /
    • 1999
  • 본 논문에서는 패턴인식과 영상압축을 목적으로 2-D 영상내에 포함되어 있는 물체들의 복잡한 형상을 형태론적 연산을 이용하여 단순한 원시형상 요소들로 분해하는 방법에 관해 연구하였다. 기존의 형태론적 형상분해 알고리즘에서 가장 큰 문제점은 형상을 표현하고 기술하는데 필요한 원시형상 요소의 수가 너무 많이 생성된다는 것이다. 본 연구에서는 이러한 문제점을 개선하기 위하여 형상의 기하학적인 특징과 가장 유사한 원시형상 요소와 4개의 스캔모드를 사용하는 형상분해법을 새롭게 제안하였다. 제안된 알고리즘은 4개의 스캔모드를 사용해서 원판, 정사각형, 마름모 꼴 등으로 구성되는 원시형상 요소를 추출하는 방법이다. 이와 같은 알고리즘은 기술 오차를 줄이면서 원시형상 요소의 수를 줄여 기술효율을 높일 수 있는 방법으로 최소의 중복성을 보장할 수 있으며, 알고리즘이 단순하고 계산시간이 감소한다는 특징이 있다.

  • PDF

이산푸리에변환에 기초한 Prony 법과 전력계통의 진동모드 추정 (A Prony Method Based on Discrete Fourier Transform for Estimation- of Oscillation Mode in Power Systems)

  • 남해곤;심관식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.293-305
    • /
    • 2005
  • This paper describes an improved Prony method in its speed, accuracy and reliability by efficiently determining the optimal sampling interval with use of DFT (discrete Fourier transformation). In the Prony method the computation time is dominated by the size of the linear prediction matrix, which is given by the number of data times the modeling order The size of the matrix in a general Prony method becomes large because of large number of data and so does the computation time. It is found that the Prony method produces satisfactory results when SNR is greater than three. The maximum sampling interval resulting minimum computation time is determined using the fact that the spectrum in DFT is inversely proportional to sampling interval. Also the process of computing the modes is made efficient by applying Hessenberg method to the companion matrix with complex shift and computing selectively only the dominant modes of interest. The proposed method is tested against the 2003 KEPCO system and found to be efficient and reliable. The proposed method may play a key role in monitoring in real time low frequency oscillations of power systems .

Changes in Mechanical Properties of Wood Due to 1 Year Outdoor Exposure

  • KIM, Gwang-Chul;KIM, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.12-21
    • /
    • 2020
  • For quantitative evaluation of wooden structures, the mechanical performance of members has undergone outdoor exposure tests. A year-long monitoring was conducted using an SPF species. Test groups were divided into twelve (each month) to measure the moisture content, density and ultimate load. Starting from May when moisture content of the test group was at the lowest, simple failure modes were observed more frequently during the first half of the experiment, whereas complex failure modes took over during the second half. Starting from June when moisture content of the test group was the highest, ultimate load decreased by 30% in the second half compared to the first half. A multiple regression analysis confirmed that moisture content of the test group was the variable with most effect on ultimate load of various outdoor variables, and an estimation equation of a simple regression analysis revealed that moisture content and ultimate load formed an inversely proportionate relationship. It is thought that correlational relationships of variables other than moisture content could be applied with the increase in added data amount by longer periods of outdoor exposure tests.

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구 (An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter)

  • 이규민;김일송
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

4D full-field measurements over the entire loading history: Evaluation of different temporal interpolations

  • Ana Vrgoc;Viktor Kosin;Clement Jailin;Benjamin Smaniotto;Zvonimir Tomicevic;Francois Hild
    • Coupled systems mechanics
    • /
    • 제12권6호
    • /
    • pp.503-517
    • /
    • 2023
  • Standard Digital Volume Correlation (DVC) approaches are based on pattern matching between two reconstructed volumes acquired at different stages. Such frameworks are limited by the number of scans (due to acquisition duration), and time-dependent phenomena can generally not be captured. Projection-based Digital Volume Correlation (P-DVC) measures displacement fields from series of 2D radiographs acquired at different angles and loadings, thus resulting in richer temporal sampling (compared to standard DVC). The sought displacement field is decomposed over a basis of separated variables, namely, temporal and spatial modes. This study utilizes an alternative route in which spatial modes are con-structed via scan-wise DVC, and thus only the temporal amplitudes are sought via P-DVC. This meth-od is applied to a glass fiber mat reinforced polymer specimen containing a machined notch, subjected to in-situ cyclic tension, and imaged via X-Ray Computed Tomography. Different temporal interpolations are exploited. It is shown that utilizing only one DVC displacement field (as spatial mode) was sufficient to properly capture the complex kinematics up to specimen failure.

ESPI기법에 의한 하중을 받는 균열 박판의 진동 특성에 관한 연구 (A Study on the Vibration Characteristics of Thin Plate with Crack under Tension using ESPI)

  • 김경석;강기수;최지은;박찬주;홍진후
    • 비파괴검사학회지
    • /
    • 제21권2호
    • /
    • pp.182-188
    • /
    • 2001
  • 대부분의 실제구조물은 인장과 진동 등이 동시에 작용하는 복합하중 상태가 되며 이러한 환경에서 물체의 거동을 해석하는 것이 중요하다. 이 논문에서는 x축에 대해 $45^{\circ}$ 결함이 있는 평판이 하중을 받고 있을 때, 진동 특성을 시간평균 electro speckle pattern interferometry(ESPI)를 이용하여 해석하였다. 결함이 있는 박판 시험편에 인장력을 증가하면서 물체의 고유진동수 변화와 모드의 형태 변화를 동시에 관찰하였다. 실험결과에서 결함은 저차모드에서는 진동모드에 영향을 주지 않았으나, 고차모드에서는 진동모드에 변화를 주었으며, 특정 진동모드에서 결함의 영향으로 현저하게 고유주파수가 낮아지는 경향을 보였다. 또한 실험결과는 유한요소해석과 비교하여 주파수 비교에서는 5% 이내의 오차율을 보였으며, 진동모드 비교에서는 완전히 일치하였다.

  • PDF

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.