• Title/Summary/Keyword: complex electric field

Search Result 130, Processing Time 0.028 seconds

Near-field Evaluation of Surface Plasmon Resonance Biosensor Sensitivity Based on the Overlap Between Field and Target Distribution (근접장-분자반응 간의 중첩을 이용한 표면 플라스몬 공명 센서 감도 평가에 관한 연구)

  • Ryu, Yeonsoo;Son, Taehwang;Kim, Donghyun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • In this study, we have investigated the correlation of far-field detection sensitivity of surface plasmon resonance (SPR) biosensors with optical signatures associated with the near-field overlap of biomolecules. The results confirm a direct relation between the far-field and near-field parameters, particularly for optical signatures defined in terms of lateral electric field components that are tangential to the interface and thus continuous across the interface. The overall correlation between near-field optical signatures and far-field resonance shift exceeded 97%. The results can be highly useful to evaluate detection sensitivity of SPR biosensors that take advantage of complex structures for localization of surface waves.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

Fractal Analysis of GIS PD Patterns (GIS 부분방전 패턴의 프랙탈 해석)

  • Choi, Ho-Woong;Kim, Eun-Young;Min, Byoung-Woon;Lee, Dong-Chul;Kim, Hee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.55-56
    • /
    • 2006
  • In prevention and diagnostic system of GIS, pattern classification is focused on the detection of unnatural patterns in PD(Partial discharge) image data. Fractals have been used extensively to provide a description and to model mathematically many of the naturally occurring complex shapes, such as coastlines, mountain ranges, clouds, etc., and have also received increased attention in the field of image processing, for purposes of segmentation and recognition of regions and objects present in natural scenes. Among the numerous fractal features that could be defined and used for image data, fractal dimension and lacunarity have been found to be useful for recognition purposes Partial discharge(PD) occuring in GIS system is a very complex phenomenon, and more so are the shapes of the various 2-d patterns obtained during routine tests and measurements. It has been fairly well established that these pattern shapes and underlying defects causing PD have a 1:1 correspondence, and therefore methods to describe and qunatify these pattern shapes must be explored, before recognition systems based on them could be developed. The computed fractal features(fractal dimension and lacunarity) for standard library of PD data were analyzed and found to possess fairly reasonable pattern discriminating abilities. This new approach appears promising, and further research is essential before any long-term predictions can be made.

  • PDF

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

A Study on the Cause Analysis of Human Error Accidents by Railway Job

  • Byeoung-Soo YUM;Tae-Yoon KIM;Sun-Haeng CHOI;Won-Mo GAL
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • Purpose: This study investigates human error accidents in the Korean railway sector, emphasizing the need for systematic management to prevent such incidents, which can have fatal consequences, especially in driving-related jobs. Research design, data and methodology: This paper analyzed data from the Aviation and Railway Accident Investigation Board and the Korea Transportation Safety Authority, examining 240 human error accidents that occurred over the last five years (2018-2022). The analysis focused on accidents in the driving, facility, electric, and control fields. Results: The findings indicate that the majority of human error accidents stem from negligence in confirmation checks, issues with work methods, and oversight in facility maintenance. In the driving field, errors such as signal check neglect and braking failures are prevalent, while in the facility and electric fields, the main issues are maintenance delays and neglect of safety measures. Conclusions: The paper concludes that human error accidents are complex and multifaceted, often resulting from a high workload on engineers and systemic issues within the railway system. Future research should delve into the causal relationships of these accidents and develop targeted prevention strategies through improved work processes, education, and training.

Computation of Transmissivity and Signal Loss in Inhomogeneous Complex Media (불균일 복합매질의 투과도 및 신호감쇄량 계산)

  • 김채영;정종철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1999
  • Transmissivity and the signal loss in soil are computed. An electric field expression for the inhomogeneous complex media modelled by two layers is shown as an integral form. Volume scattering occurs in inhomogeneous media, and iterative Born approximation is used to analyze this scattering effect. The degree of randomness is controlled by specifying the variance and correlation length. Expression for the transmissivity and the signal loss is presented as the parameter of soil moisture contents, soil particle radius, temperature and frequency. The analysis shows that big deviation in signal loss depends on the temperature variation remarkably and the physical reason of unusual level is explained.

  • PDF

쌍안정성을 가지는 단분자 기억소자 디자인

  • Park, Tae-Yong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.37-52
    • /
    • 2013
  • 무어의 법칙에 따르면, 반도체의 집적도 2년마다 2배씩 증가한다고 한다. 무어의 법칙은 지금까지는 집적회로 기술의 발전을 잘 예측했다. 하지만 트랜지스터의 사이즈를 줄일수록 누수전류와 회로의 저항을 조절하기 어렵기 때문에 트랜지스터의 소형화에는 한계가 있다. 우리는 곧 무어의 법칙의 한계를 맞이할 것이다. 그래서 트랜지스터를 더욱 소형화시키기 위해서는 bottom-up analysis가 필요한 시점이다. Top-down analysis가 초기의 커다란 트랜지스터에서 점점 소형화를 시켜 작은 트랜지스터를 만든다는 개념인 반면, Bottom-up analysis는 처음부터 작은 분자를 조작하여 트랜지스터와 같은 성질을 띄도록 만드는 개념이다. 분자가 기억소자로서 이용되려면 저항이 다른 2가지 안정한 상태가 필요하다. 이번 연구에서 나는 기억소자를 디자인 하기 위하여 high spin state와 low spin state 두 가지 안정한 상태를 가지는 spin crossover complex를 이용하기로 했다. 이전의 연구에서 spin crossover 는 전기장을 이용해서도 유도될 수 있다고 확신하였고, 이를 이용해서 기억소자를 디자인하기로 하였다. 이번 연구를 위해서 symmetry를 가지는 octahedral spin crossover complex를 디자인하였고 이를 '기억 분자'라고 명명했다. 그리고 이 분자의 high spin state와 low spin state가 전기장을 이용하여 서로 바뀔 수 있는지 가능성을 DFT with B3LYP functional을 이용해서 비교했다. 그 결과로 전기장을 이용하여 기억분자의 spin crossover을 일으킬 수는 있지만 abnormally strong electric field를 써야 한다는 사실을 알아냈다. 이번 연구를 토대로 추후의 연구를 위해, 기억소자가 되기 위하여 분자가 어떤 특징을 만족시켜야 하는지를 분석했다.

  • PDF

Development of NCS-Based Technical Education Program for Analog Signal Processing (아날로그 신호처리를 위한 NCS 기반 기술교육 프로그램 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.510-514
    • /
    • 2020
  • Vocational education needs to be transformed to cultivate talents with diverse fusion competencies, which is in line with the recent changes that have become a part of the complex technological developments in the 4th Industrial Revolution. Therefore, it is very important for college graduates to obtain employment skills as they are required to prepare for careers within the complex environments of future societies. With the transition to the Internet of Things (IoT)-based control in the manufacturing industry, the development of technological education and related training programs is required to cultivate practical talents for students who have acquired not only the information on existing programmable logic controller (PLC)-based technology, but also that on embedded programming technology. Therefore, to develop an NCS-based education program for analog signal processing to ensure that programming can easily be learned for cultivating practical talent, this study summarizes the opinions of field experts, selects the appropriate NCS competency unit, and designs an adequate technology education training program.

Effects of Strong Wind and Ozone on Localized Tree Decline in the Tanzawa Mountains of Japan

  • Suto, Hitoshi;Hattori, Yasuo;Tanaka, Nobukazu;Kohno, Yoshihisa
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • The numerical simulation of wind and ozone ($O_3$) transport in mountainous regions was performed with a computational fluid dynamics technique. A dry deposition model for $O_3$ was designed to estimate $O_3$ deposition in complex terrain, and the qualitative validity of the predicted $O_3$ concentration field was confirmed by comparison with observed data collected with passive samplers. The simulation revealed that wind velocity increases around ridge lines and peaks of mountains. The areas with strong wind corresponded well with the sites of tree decline at high altitudes, suggesting that it is an important factor in the localization of tree/forest decline. On the other hand, there is no direct relationship between forest decline and $O_3$ concentration. The $O_3$ concentration, however, tends to increase as wind velocity becomes higher, thus the $O_3$ concentration itself may be a potential secondary factor in the localized decline phenomena. While the diffusion flux of $O_3$ is not related to localized tree decline, the pattern of advection flux is related to those of high wind velocity and localized tree decline. These results suggest that strong wind with large advection flux of $O_3$ may play a key role in the promotion of tree/forest decline at high mountain ridges and peaks.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.