Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements

벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링

  • Son Jeong-Sul (Geophysical Exploration and Mining Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Song Yoonho (Geophysical Exploration and Mining Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Chung Seung-Hwan (Geophysical Exploration and Mining Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Suh Jung Hee (Sch. of Urban, Civil & Geosystem Eng., Seoul National University)
  • 손정술 (한국지질자원연구원 탐사개발연구부) ;
  • 송윤호 (한국지질자원연구원 탐사개발연구부) ;
  • 정승환 (한국지질자원연구원 탐사개발연구부) ;
  • 서정희 (서울대학교 공과대학 지구환경시스템 공학부)
  • Published : 2002.11.01

Abstract

Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.

유한요소법을 이용한 전자기장의 3차원 모델링은 전자기장의 연속조건을 수치해가 만족하지 못함으로 인해서 발생하는 벡터 기생해(vector parasite)의 문제점을 가지고 있다. 이 연구에서는 벡터 기생해로 인한 오차를 줄이기 위해, 기저함수가 크기와 방향을 가지는 벡터요소를 도입하였다. 유한요소 행렬식은 complex BCG법을 적용하여 계산시간과 기억용량을 줄이고자 하였으며, 반복적인 해의 수렴속도 향상을 위해서 Point Jacobi법을 적용하였다. 개발된 알고리듬을 수직 전기 쌍극자 송신원을 이용한 층서구조 모형에 적용하여 이를 층서구조의 해와 비교함으로써 수치 모델링 알고리듬의 타당성을 검증하였으며, 이 과정에서 기존의 유한요소법에서 발생하는 벡터 기생해의 문제점이 벡터요소를 이용하는 경우에는 나타나지 않는 것을 확인하였다. 개발된 3차원 전자탐사 모델링 기법의 고주파수 영역으로의 적용성을 고찰하기 위하여, 100MHz의 수직 자기 쌍극자 송신원을 이용한 모델링을 유전율 이상층이 존재하는 층서구조 모형에 적용하여, 이를 층서구조 해와 비교하여 알고리듬의 타당성을 확인하였다. 검증된 3차원 전자탐사 모델링 기법을 유전율 이상체에 적용하여 이상체 주변에서의 전기장의 반응을 공간적으로 살펴보았다 이 연구에서 개발된 벡터요소를 사용한 3차원 고주파 전자탐사 모델링 기법은 기존의 전기전도도 이상체 뿐만 아니라 유전율 이상체에 대한 모델링을 가능하게 하여, 고주파 전자탐사법의 새로운 적용 및 해석의 기반을 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. 장현삼, 임해룡, 홍재호, 1998, 쓰레기 매립장의 토양오염조사를 위한 전자탐사 및 전기탐사: 물리탐사, 1, 87-91
  2. Bossavit, A., and Mayergoyz, I., 1989, Edge-elements for scattering problems: IEEE Trans. Magn., 25, 2816-2821
  3. Bossavit, A., and Veiite, J. C., 1983, The Trifou Code: Solving the 3-D eddy-currents problem by using H as state variable: IEEE Trans. Magn., 19, 2465-2470
  4. Henderson, J. H., 1992, Urban geophysics - A review: Exptl.Geophys., 23, 531-542
  5. Jacobs, D. A. H., 1986, A generalization of the conjugate gradient method to solve complex systems: IMA J. NumericaI Anal., 6, 447-452
  6. Jiaming, J., 1993, The finite element method in electromagnetics: John Wiley and Sons, Inc
  7. Koshiba, M., Hayata, K., and Suzuki, M., 1985, Finite element formulation in terms of the electric field vector for electromagenetic waveguide problem: IEEE Trans. Microwave Theory Tech., 33, 900-905
  8. Lynch, D. R., and Paulsen, K. D., 1991, Origin of vector Para-sites in numerical Maxwell solutions: IEEE Trans. MicrowaveTheory Tech., 39, 383-394
  9. Nedelec, J. C., 1980, Mixed finite elements in $R^{3}$: Numer. Math., 35, 315-341
  10. Paulsen, K. D., Lynch, D. R., and Strohbehn, J. W., 1988, Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equation for lossy dielectric media: IEEE Trans. Microwave Theory Tech., 36, 682-693
  11. Paulsen, K. D., and Lynch, D. R., 1991, Elimination of vector parasites in finite element Maxwell solution: IEEE Trans. Microwave Theory Tech., 39, 395-40
  12. Pellerin, L., Labson, V. F, and Pfeifer, M. C., 1995, VETEM A vary early time electromagnetic system: Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), 725-731
  13. Peterson, A. F., 1988, Absorbing boundary conditions for the vector wave equation: Microwave and Optical technical letters, 1, 62-64
  14. Pinchuk, A. R., Crowley, C. W., and Silvester, P. P., 1988, Spurious solution to the vector diffusion and wave field problems: IEEE Trans. Magn., 24, 151-168
  15. Rahman, B. M. A., and Davies, J. B., 1984, Penalty function improvement of waveguide solution by finite elements: IEEE Trans. Microwave Theory Tech., 32, 922-928
  16. Smith, C. F., Peterson, A. F, and Mittra, R., 1990, The Biconju-gate gradient method for electromagnetic scattering: IEEE Trans. Antennas Propagat, 38, 938-940
  17. Smith, J. T, 1996, Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator: Geophysics, 61, 1319-132
  18. Song, Y., Morrison, H. F, and Lee, K. H., 1997, High frequency electromagnetic impedance for subsurface imaging: Symposium on the Application of Geophysics to Engineering and EnvironmentaI Problems (SAGEEP), 761-772
  19. Svedin, J. A. M., 1989, A numerically efficient finite-element formulation for the general waveguide problem without spurious mode: IEEE Trans. Microwave Theory Tech., 37, 1708-1715
  20. Unsworth, M. J., Travis, B. J., and Chave, A. D., 1993, Electromagnetic induction by a finite electric dipole source over a 2-D earth: Geophysics, 58, 198-214
  21. Ward, S. H., and Hohman, G. W., 1988, Electromagneic theory for geophycial applications, in Nabighian, M. N., Ed., Electromagnetic method in applied geophysics, Vol. 1 - Theory: Soc. Expl. Geophys
  22. Webb, J. P., and Kanellopoulos, V. N., 1988, Absorbing boundary conditions for the finite element solution of vector wave equation: Microwave and Optical Technology Letters, 2, 370-372.
  23. Welij, J. S., 1985, Calculation of eddy currents in terms of H on hexahedra: IEEE Trans. Magn., 21, 2239-2241