• 제목/요약/키워드: complex discrete system

검색결과 162건 처리시간 0.025초

Compatibility Relationship of Transfer Function Parameters of Structures (구조물 전달함수 매개변수의 구성조건 관계)

  • Chai, Jangbom
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제13권2호
    • /
    • pp.168-175
    • /
    • 1996
  • The measured vibration on a machine or a structure is shaped by the excitation waveform and the path transfer function. Mechanism diagnostics tends to focus on retrieving source features by minimizing the effects of the structiral path, while in structural diagnostics we are more interested in minimizing source effects and retrieving path parameters. In structural diagnostics, therefore, there are experimental issues of gathering date that are independent source effects and finding a transfer function signature that reveals structural defects. This paper describes how the transfer function can be obtained more accurately by experiment using the compatibility relationship which is newly discovered.

  • PDF

Automatic reentry of deepsea riser by adaptive control (적응제어에 의한 대수심 라이저의 리엔트리)

  • 남동호
    • Journal of Ocean Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.108-118
    • /
    • 1996
  • This paper presents automatic reentry of a deepsea reser by adaptive control. Reentry is one of the major pro blems regarding a deepsea riser. In the reentry operation, the lower end of riser must be accurately positioned over the tarket point on the seabed. But the deepsea riser shows complex elastic response due to flexibility and nonlinearity of the riser dynamics and the required positioning accuracy is high. Moreover, elastic deformation must by controlled for securing structural integrity. In adaptive control, uncertainly known parameters like added mass and drag coefficient in the riser dynamics are identified and control forces at the floating body and the riser are calculated simultaneously. An Adaptive algorithm for MIMO linear discrete time system without requiring a persistent excitation is adopted in this study. The effectiveness of adaptive control logic is tested by numerical simulation and model experiment. The designed control system shows good overall performances, so that the present study can be applied to the control of the deepsea riser.

  • PDF

Further Improvements on Bose's 2D Stability Test

  • Xu, Li;Yamada, Minoru;Lin, Zhiping;Saito, Osami;Anazawa, Yoshihisa
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.319-332
    • /
    • 2004
  • This paper proposes some further improvements on N.K. Bose's 2D stability test for polynomials with real coefficients by revealing symmetric properties of the polynomials, resultants occurring in the test and by generalizing Sturm's method. The improved test can be fulfilled by a totally algebraic algorithm with a finite number of steps and the computational complexity is largely reduced as it involves only certain real variable polynomials with degrees not exceeding half of their previous complex variable counterparts. Nontrivial examples for 2D polynomials having both numerical and literal coefficients are also shown to illustrate the computational advantage of the proposed method.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Adaptive control of gas metal arc welding process

  • Song, Jae-Bok;Hardt, David-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.191-196
    • /
    • 1993
  • Since the welding process is complex and highly nonlinear, it is very difficult to accurately model the process for real-time control. In this paper, a discrete-time transfer function matrix model for gas metal arc welding process is proposed. Although this linearized model is valid only around the operating point of interest, the adaptation mechanism employed in the control system render this model useful over a wide operating range. A multivariable one-step-ahead adaptive control strategy combined with a recursive least-squares method for on-line parameter estimation is implemented in order to achieve the desired weld bead geometries. Command following and disturbance rejection properties of the adaptive control system for both SISO and MIMO cases are investigated by simulation and experiment.

  • PDF

Effect of System Operator on Dynamic Multi-Stage Inventory Problems (System operator가 다단계재고동적(多段階在庫動的) system 에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Man-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제3권1호
    • /
    • pp.39-47
    • /
    • 1977
  • Most of the current literature on inventory theory has been devoted to the study of single stage models. A class of inventory problems which is of great interest is the multistage inventory system which involves a series and hierarchical sequence of stations. This study analyzes some aspect of the series type and multi-stage inventory system, using the fixed cycle ordering which bas a modificatory control function in the system equations. The objective of this study is to clarify the dynamic behavior of the system. The author has derived the theoretical formulas of variation of ordering quantity and stock fluctuation of each stage due to power spectral density function. Influence of parameters such as, (1) intensity of autocorrelation of demand sequence ($\lambda$), (2) forecasting exponential smoothing factors of each stage (${\alpha}_1,\;{\alpha}_2,\;{\alpha}_3$) and (3) production control factor of the 3rd stage ($\gamma$), as operators of the system on the variation of ordering quantity and stock fluctuation of the system. is also clarified. As a result of this study, the relations between the variation of ordering quantity, stock fluctuation and the parameters of the system, have been found. The principles and the theorical analysis presented here will be applicable to more complex type of discrete control systems in constructing the specific condition of the system to minimize inventory variances.

  • PDF

Implementation and Static Verification Methodology of Discrete Event Simulation Software based on the DEVS Diagram: A Practical Approach (DEVS 다이어그램 기반 이산사건 시뮬레이션 소프트웨어 구현 및 정적 검증기법: 실용적 접근방법)

  • Song, Hae Sang
    • Journal of the Korea Society for Simulation
    • /
    • 제27권3호
    • /
    • pp.23-36
    • /
    • 2018
  • Discrete Event System Specification (DEVS) has been used for decades as it provides sound semantics for hierarchical modular specification of discrete event systems. Instead of the mathematical specification, the DEVS diagram, based on the structured DEVS formalism, has provided more intuitive and convenient representation of complex DEVS models. This paper proposes a clean room process for implementation and verification of a DEVS diagram model specification into a simulation software source code. Specifically, it underlies a sequence of transformation steps from conformance and integrity checking of a given diagram model, translation into a corresponding tabular model, and finally conversion to a simulation source code, with each step being inversely verifiable for traceability. A simple example helps developers to understand the proposed process with associated transformation methods; a case study shows that the proposed process is effective for and adaptable to practical simulation software development.

Requirement Analysis for Bio-Information Integration Systems

  • Lee, Sean;Lee, Phil-Hyoun;Dokyun Na;Lee, Doheon;Lee, Kwanghyung;Bae, Myung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.11-15
    • /
    • 2003
  • Amount of biological data information has been increasing exponentially. In order to cope with this bio-information explosion, it is necessary to construct a biological data information integration system. The integration system could provide useful services for bio-application developers by answering general complex queries that require accessing information from heterogeneous bio data sources, and easily accommodate a new database into the integrated systems. In this paper, we analyze architectures and mechanisms of existing integration systems with their advantages and disadvantages. Based on this analysis and user requirement studies, we propose an integration system framework that embraces advantages of the existing systems. More specifically, we propose an integration system architecture composed of a mediator and wrappers, which can offer a service interface layer for various other applications as well as independent biologists, thus playing the role of database management system for biology applications. In other words, the system can help abstract the heterogeneous information structures and formats from the application layer. In the system, the wrappers send database-specific queries and report the result to the mediator using XML. The proposed system could facilitate in silico knowledge discovery by allowing combination of numerous discrete biological information databases.

  • PDF

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

A Study on the Improvement of Convergence for a Discrete-time Learning Controller by Approximated Inverse Model (근사 역모델에 의한 이산시간 학습제어기의 수렴성 개선에 관한 연구)

  • Moon, Myung-Soo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.101-105
    • /
    • 1989
  • The iterative learning controller makes the system output follow the desired output over a finite time interval through iterating trials. In this paper, first we discuss that the design problem of learning controller is originally the design problem of the inverse model. Then we show that the tracking error which is the difference between the desired output and the system output is reduced monotonically by properly modeled inverse system if the magnitude of the learning operator being introduced is bounded within the unit circle in complex domain. Also it would be shown that the conventional learning control method is a kind of extremely simplified inverse model learning control method of the objective controlled system. Hence this control method can be considered as a generalization of the conventional learning control method. The more a designer model the objective controlled system precisely, the better the performance of the approximated inverse model learning controller would be. Finally we compare the performance of the conventional learning control method with that of the approximated inverse model learning control method by computer simulation.

  • PDF