• 제목/요약/키워드: complete orthogonal set of idempotents

검색결과 3건 처리시간 0.016초

EXTENSIONS OF GENERALIZED STABLE RINGS

  • Wanru, Zhang
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1091-1097
    • /
    • 2009
  • In this paper, we investigate the extensions of generalized stable rings. It is shown that a ring R is a generalized stable ring if and only if R has a complete orthogonal set {e$_1$, . . . , e$_n$} of idempotents such that e$_1$Re$_1$, . . . , e$_n$Re$_n$ are generalized stable rings. Also, we prove that a ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring if and only if T(R,M) is a generalized stable ring.

A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.463-471
    • /
    • 2013
  • Let R be a ring with identity 1, $I(R){\neq}\{0\}$ be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, $f{\in}I(R)$ ($e{\neq}f$), $e+f{\in}I(R)$. In this paper, the following are shown: (1) I(R) is a finite additive set if and only if $M(R){\backslash}\{0\}$ is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite field).

SEMICENTRAL IDEMPOTENTS IN A RING

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.463-472
    • /
    • 2014
  • Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R and $S_{\ell}$(R) (resp. $S_r$(R)) be the set of all left (resp. right) semicentral idempotents in R. In this paper, the following are investigated: (1) $e{\in}S_{\ell}(R)$ (resp. $e{\in}S_r(R)$) if and only if re=ere (resp. er=ere) for all nilpotent elements $r{\in}R$ if and only if $fe{\in}I(R)$ (resp. $ef{\in}I(R)$) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ which are isomorphic to e if and only if $(fe)^n=(efe)^n$ (resp. $(ef)^n=(efe)^n$) for all $f{\in}I(R)$ which are isomorphic to e where n is some positive integer; (2) For a ring R having a complete set of centrally primitive idempotents, every nonzero left (resp. right) semicentral idempotent is a finite sum of orthogonal left (resp. right) semicentral primitive idempotents, and eRe has also a complete set of primitive idempotents for any $0{\neq}e{\in}S_{\ell}(R)$ (resp. 0$0{\neq}e{\in}S_r(R)$).