Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.3.463

SEMICENTRAL IDEMPOTENTS IN A RING  

Han, Juncheol (Department of Mathematics Education Pusan National University)
Lee, Yang (Department of Mathematics Education Pusan National University)
Park, Sangwon (Department of Mathematics Dong-A University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.3, 2014 , pp. 463-472 More about this Journal
Abstract
Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R and $S_{\ell}$(R) (resp. $S_r$(R)) be the set of all left (resp. right) semicentral idempotents in R. In this paper, the following are investigated: (1) $e{\in}S_{\ell}(R)$ (resp. $e{\in}S_r(R)$) if and only if re=ere (resp. er=ere) for all nilpotent elements $r{\in}R$ if and only if $fe{\in}I(R)$ (resp. $ef{\in}I(R)$) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ which are isomorphic to e if and only if $(fe)^n=(efe)^n$ (resp. $(ef)^n=(efe)^n$) for all $f{\in}I(R)$ which are isomorphic to e where n is some positive integer; (2) For a ring R having a complete set of centrally primitive idempotents, every nonzero left (resp. right) semicentral idempotent is a finite sum of orthogonal left (resp. right) semicentral primitive idempotents, and eRe has also a complete set of primitive idempotents for any $0{\neq}e{\in}S_{\ell}(R)$ (resp. 0$0{\neq}e{\in}S_r(R)$).
Keywords
left (resp. right) semicentral idempotent; complete set of (centrally) primitive idempotents;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Triangular matrix repre-sentations, J. Algebra 230 (2000), no. 2, 558-595.   DOI   ScienceOn
2 G. Calaugareanu, Rings with lattices of idempotents, Comm. Algebra 38 (2010), no. 3, 1050-1056.   DOI   ScienceOn
3 H. K. Grover, D. Khurana, and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), no. 8, 2583-2590.   DOI   ScienceOn
4 J. Han and S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), no. 9, 3551-3557.   DOI
5 T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc., 1991.