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SEMICENTRAL IDEMPOTENTS IN A RING

Juncheol Han, Yang Lee, and Sangwon Park

Abstract. Let R be a ring with identity 1, I(R) be the set of all nonunit
idempotents in R and Sℓ(R) (resp. Sr(R)) be the set of all left (resp.
right) semicentral idempotents in R. In this paper, the following are
investigated: (1) e ∈ Sℓ(R) (resp. e ∈ Sr(R)) if and only if re = ere (resp.
er = ere) for all nilpotent elements r ∈ R if and only if fe ∈ I(R) (resp.
ef ∈ I(R)) for all f ∈ I(R) if and only if fe = efe (resp. ef = efe) for all
f ∈ I(R) if and only if fe = efe (resp. ef = efe) for all f ∈ I(R) which
are isomorphic to e if and only if (fe)n = (efe)n (resp. (ef)n = (efe)n)
for all f ∈ I(R) which are isomorphic to e where n is some positive integer;
(2) For a ring R having a complete set of centrally primitive idempotents,
every nonzero left (resp. right) semicentral idempotent is a finite sum of
orthogonal left (resp. right) semicentral primitive idempotents, and eRe

has also a complete set of primitive idempotents for any 0 6= e ∈ Sℓ(R)
(resp. 0 6= e ∈ Sr(R)).

1. Introduction and basic definitions

Throughout this paper, let R be a ring with identity 1, J(R) denote the
Jacobson radical of R and I(R) be the set of all idempotents of R. An idempo-
tent e ∈ R is left (resp. right) semicentral in R if Re = eRe (resp. eR = eRe)
(refer [1]). It is easy to show that e ∈ R is left (resp. right) semicentral in R if
and only if ae = eae (resp. ea = eae) for all a ∈ R. Two idempotents e, f ∈ R
are said to be isomorphic if there exist a, b ∈ R such that e = ab, f = ba (refer
[2, 5]). In Section 2, the following equivalent conditions are obtained:

(1) e ∈ R is left (resp. right) semicentral;
(2) re = er for all units r ∈ R;
(3) re = ere (resp. er = ere) for all nilpotent elements r ∈ R;
(4) fe (resp. ef) is an idempotent for all idempotents f ∈ R;
(5) fe = efe (resp. ef = efe) for all idempotents f ∈ R;
(6) fe = efe (resp. ef = efe) for all idempotents f ∈ R which are

isomorphic to e;
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(7) (fe)n = (efe)n (resp. (ef)n = (efe)n) for all idempotents f ∈ R which
are isomorphic to e where n is some positive integer.

A subset S of a ring R is called commuting if ef = fe for all e, f ∈ S. Recall
that two idempotents e, f ∈ R are said to be orthogonal if ef = fe = 0. Also
recall that an idempotent e ∈ R is said to be primitive if it can not be written
as a sum of two nonzero orthogonal idempotents, or equivalently, eR (resp. Re)
is indecomposable as a right (resp. left) R-module. Let M(R) be the set of
zero and all primitive idempotents of R, Sℓ(R) (resp. Sr(R)) be the set of all
left (resp. right) semicentral idempotents in R, and Mℓ(R) = M(R) ∩ Sℓ(R)
(resp. Mr(R) = M(R)∩Sr(R)). A subset S of I(R) is also said to be additive
in I(R) if for all e, f ∈ S (e 6= f), e + f ∈ I(R) (refer [4]). For example, if R
is a Boolean ring or a direct product of local rings, then M(R) is additive in
I(R). In Section 2, it was also shown that (1) Mℓ(R) (resp. Mr(R)) is additive
in I(R) if and only if Mℓ(R) (resp. Mr(R)) is orthogonal; (2) Let N ⊆ J(R)
be an ideal of R such that idempotents in R/N can be lifted to R. (i) If Sℓ(R)
(resp. Sr(R)) is commuting, then Sℓ(R/N) (resp. Sr(R/N)) is additive in
I(R/N) if and only if Sℓ(R) (resp. Sr(R)) is additive in I(R); (ii) If Mℓ(R)
(resp. Mr(R)) is commuting, then Mℓ(R/N) (resp. Mr(R/N)) is additive in
I(R/N) if and only if Mℓ(R) (resp. Mr(R)) is additive in I(R).

Recall that a central idempotent c of a ring R is said to be centrally
primitive in R if c 6= 0 and c cannot be written as a sum of two nonzero orthog-
onal central idempotents in R (equivalently, cR is indecomposable as a ring).
Also, R is said to have a complete set of primitive (resp. centrally primitive)
idempotents if there exists a finite set of orthogonal primitive (resp. centrally
primitive) idempotents whose sum is the identity of R [5, Sects. 21 and 22].
It was shown that a ring R having a complete set of primitive idempotents
has a complete set of centrally primitive idempotents [5, Theorem 22.5]. By [5,
Proposition 22.1], it was also shown that if R has a complete set {c1, c2, . . . , cn}
of centrally primitive idempotents, then any central idempotent is a sum of a
subset of {c1, c2, . . . , cn}. In Section 3, it was shown that (1) for a ring R
having a complete set T of centrally primitive idempotents, any nonzero left
(resp. right) semicentral idempotent of R is a sum of orthogonal left (resp.
right) semicentral primitive idempotents of R and eRe has also a complete set
of centrally primitive idempotents for any nonzero idempotent e ∈ R; (2) for a
ring R having a complete set T of primitive idempotents, any complete set of
centrally primitive idempotents is contained in T and it consists of all centrally
primitive idempotents of R.

2. Properties of semicentral idempotents in a ring

In this section, we will find some properties of left (resp. right) semicentral
idempotents of a ring R.

Proposition 2.1. For an idempotent e of a ring R the following conditions

are equivalent:
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(1) e ∈ R is left (resp. right) semicentral;
(2) re = ere (resp. er = ere) for all units r ∈ R;
(3) re = ere (resp. er = ere) for all nilpotent elements r ∈ R;
(4) fe (resp. ef) is an idempotent for all idempotents f ∈ R;
(5) fe = efe (resp. ef = efe) for all idempotents f ∈ R;
(6) fe = efe (resp. ef = efe) for all idempotents f ∈ R which are

isomorphic to e;
(7) (fe)n = (efe)n (resp. (ef)n = (efe)n) for all idempotents f ∈ R which

are isomorphic to e where n is some positive integer.

Proof. First, we will prove it in the left semicentral case. (1) ⇒ (2), (3), (4)
and (5) ⇒ (6) ⇒ (7) are obvious.

(2) ⇒ (3): Suppose that the condition (2) holds. Let r be an arbitrary
nilpotent element of R. Then 1+r is a unit of R. By assumption (2), (1+r)e =
e(1 + r)e, and then re = ere. Hence (3) holds.

(3) ⇒ (1): Suppose that the condition (3) holds. Let a ∈ R be arbitrary.
Consider the element r = (1 − e)ae ∈ R. Then r2 = 0, and so re = ere and
this yields (1− e)ae = 0. Thus ae = eae, and so e is left semicentral.

(4) ⇒ (5): Suppose that the condition (4) holds. Since 1 − f ∈ R are
idempotents for all idempotents f ∈ R, (1 − f)e = ((1− f)e)2 by assumption.
Thus e − fe = (1 − f)e = ((1 − f)e)2 = e − fe − efe + (fe)2 = e − efe, so
fe = efe for all idempotents f ∈ R.

(7) ⇒ (1): Suppose that the condition (6) holds and assume that e is not
left semicentral. Then there is a ∈ R such that ae − eae 6= 0. Consider
f = e+ae−eae. Then f2 = f 6= e, fe = f and ef = e, so these are isomorphic
idempotents. Therefore, e = (efe)n 6= (fe)n = f for any positive integer n,
which contradicts to the assumption (6). Hence e is left semicentral.

Next, we can prove it in the right semicentral case by the similar argument
used in the left semicentral case. �

Corollary 2.2. For an idempotent e of a ring R the following conditions are

equivalent:

(1) e ∈ R is central;
(2) re = er for all units r ∈ R;
(3) re = er for all nilpotent elements r ∈ R;
(4) fe and ef are idempotents for all idempotents f ∈ R;
(5) fe = ef for all idempotents f ∈ R;
(6) fe = ef for all idempotents f ∈ R which are isomorphic to e;
(7) (fe)n = (ef)n for all idempotents f ∈ R which are isomorphic to e

where n is some positive integer.

Proof. It follows from Proposition 2.1. �

Corollary 2.3. For a ring R an idempotent e of R is left semicentral if and

only if 1− e is right semicentral.
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Proof. Let e be a left semicentral idempotent of R. Then fe = efe for all idem-
potents f ∈ R by Proposition 2.1. Therefore, (1−e)f(1−e) = f−ef−fe+efe =
f − ef = f(1 − e), which implies that 1 − e is a right semicentral idempotent
of R by Proposition 2.1. The converse holds by the similar argument. �

Example 1. Let R be the 2 by 2 upper triangular matrix ring over Z3 where Z3

is a field of integers modulo 3. Consider two idempotents e = ( 1 1
0 0 ) , f = ( 0 1

0 1 ) of
R. Since ef is not an idempotent of R, e is not right semicentral by Proposition
2.1. But we can checked that e is left semicentral. By Corollary 2.3, 1 − e is
right semicentral idempotent but not left semicentral idempotent of R.

Remark 1. Let Sℓ(R) (resp. Sr(R)) be the set of all left (resp. right) semicen-
tral idempotents of a ring R. Then we note the following:

(1) Sℓ(R) (resp. Sr(R)) is closed under multiplication.
(2) Sℓ(R) (resp. Sr(R)) is closed under conjugation, i.e., ueu−1 ∈ Sℓ(R)

(resp. ufu−1 ∈ Sr(R)) for all e ∈ Sℓ(R) (resp. f ∈ Sr(R)) and all units u ∈ R.
(3) e ∈ Sℓ(R) (resp. f ∈ Sr(R)) if and only if e + ea(1 − e) ∈ Sℓ(R) (resp.

f + fa(1− f) ∈ Sr(R)) for each a ∈ R.

Note that if e and e′ = e + ea(1 − e) (a ∈ R) are idempotents of a ring R,
then e+ ea(1− e) = ueu−1 for some unit u ∈ R by [5, Exercise 21.4, page 333].
But the converse may not be true by the following example:

Example 2. Let R be the 2 by 2 matrix ring over Z2 where Z2 is a field of
integers modulo 2. Consider the idempotent e = ( 0 1

0 1 ) of R. Then we check
that

{e+ ea(1− e)|a ∈ R} =

{(

0 1
0 1

)

,

(

1 0
1 0

)}

Take f2 = f = ( 1 0
0 0 ) ∈ R. Then f /∈ {e + ea(1 − e)|a ∈ R}. On the other

hand, e and f are conjugate since e = ufu−1 for some unit u = ( 1 1
1 0 ) ∈ R.

Now we raise the following question:

Question 1. Let e, e′ be isomorphic idempotents of a ring R. If e is left (right)
semicentral, then is e′ left (right) semicentral?

Recall that [5, Exercise 21.16, page 334] if eRe is a semilocal ring, then e, e′

are isomorphic if and only if e′ = ueu−1 for some unit u ∈ R. Hence if eRe is a
semilocal ring, then the answer to the above question is true by Remark 1-(2).

Lemma 2.4. Let R be a ring and S be a subset of R. Then S is additive in

I(R) if and only if S is commuting and 2ef = 0 for all e, f ∈ S (e 6= f).

Proof. Suppose that S is additive in I(R). Let e, f ∈ Sℓ(R) (e 6= f) be ar-
bitrary. Then e + f = (e + f)2 = e + ef + fe + f , and so ef = −fe. Thus
ef = e(ef) = e(−fe) = (−ef)e = (fe)e = fe. Hence S is commuting and also
2ef = 0 for all e, f ∈ S (e 6= f). The converse is clear. �

Lemma 2.5. For a ring R the following conditions are equivalent:
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(1) Sℓ(R) is commuting;
(2) Sr(R) is commuting;
(3) Sℓ(R) = B(R);
(4) Sr(R) = B(R).

Proof. (1) ⇔ (2) follows from Corollary 2.3. (3) ⇒ (1) and (4) ⇒ (1) are
obvious.

(1) ⇒ (3): Assume that Sℓ(R) is commuting and let e ∈ Sℓ(R) and a ∈ R
be arbitrary. Write f = e+ ea(1− e). Then f ∈ Sℓ(R) by Remark 1-(3). Since
Sℓ(R) is commuting, e = fe = ef = f = e + ea(1− e), and so ea = eae = ae.
Hence e is central, and thus (1) implies (3). Similarly, we have (2) ⇒ (4). �

Proposition 2.6. For a ring R the following conditions are equivalent:

(1) Sℓ(R) (resp. Sr(R)) is additive in I(R);
(2) Sℓ(R) (resp. Sr(R)) is commuting and 2e = 0 for all e ∈ Sℓ(R) (resp.

e ∈ Sr(R));
(3) Sℓ(R) (resp. Sr(R)) is commuting and the characteristic of R is equal

to 2.

Proof. First, we will prove it in the left semicentral case.
(1) ⇒ (2): Suppose that Sℓ(R) is additive in I(R). Then Sℓ(R) is commuting

by Lemma 2.4. Let e ∈ Sℓ(R)(e 6= 1) be arbitrary. Since Sℓ(R) is additive in
I(R) and 1, e ∈ Sℓ(R), 1 + e ∈ I(R), and then 2e = 0.

(2) ⇒ (3): Suppose that Sℓ(R) is commuting and 2e = 0 for all e ∈ Sℓ(R).
Since 1 − e ∈ Sr(R) by Corollary 2.3 and Sℓ(R) = Sr(R) by Lemma 2.5, we
have 2(1−e) = 0 by assumption, and so 2 ·1 = 2e = 0. Hence the characteristic
of R is equal to 2.

(3) ⇒ (1): Obvious.
Next, we can prove it in the right semicentral case by the similar argument

used in the left semicentral case. �

Corollary 2.7. Let R be a ring. Then B(R) is additive in I(R) if and only if

B(R) forms a Boolean ring.

Proof. It follows from Lemma 2.5 and Proposition 2.6. �

Note that [5, Exercise 21.13, page 334] if e, f are commuting idempotents of
a ring R such that ē = f̄ ∈ R/N where N is a nil ideal of R, then e = f . It is
well known that if N is a nil ideal of a ring R, then N ⊆ J(R). In general, we
have the following:

Proposition 2.8. Let N ⊆ J(R) be an ideal of a ring R. If e, f ∈ R are

commuting idempotents such that ē = f̄ ∈ R/N , then e = f .

Proof. Since ē = f̄ ∈ R/N , e − f ∈ N . Since ef = fe, we have (e − f)2 =
e − 2ef + f = (e − f)4, and so (e − f)2 ∈ I(R). Thus (e − f)2 ∈ I(R) ∩N ⊆
I(R) ∩ J(R). Since I(R) ∩ J(R) = {0}, (e − f)2 = e − 2ef + f = 0. Hence
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e + f = 2ef (∗). By multiplying with e (resp. f) from the both sides of (∗),
we have e = ef (resp. f = ef). Hence e− f = ef − ef = 0. �

Recall Mℓ(R) (resp. Mr(R)) is the set of all left (resp. right) semicentral
primitive idempotents of a ring R.

Proposition 2.9. Let R be a ring R. Then Mℓ(R) (resp. Mr(R)) is additive

in I(R) if and only if Mℓ(R) (resp. Mr(R)) is orthogonal.

Proof. Suppose that Mℓ(R) (resp. Mr(R)) is additive in I(R) and assume that
there exist e, f ∈ Mℓ(R) (resp. e, f ∈ Mr(R)) such that ef 6= 0. Since Mℓ(R)
(resp. Mr(R)) is additive in I(R), Mℓ(R) (resp. Mr(R)) is commuting by
Lemma 2.4, and so ef = fe. Note that e = ef + (e − ef) and ef(e − ef) =
(e − ef)ef = 0. Since e is primitive and ef 6= 0, e = ef . By the similar
argument, we have f = fe (= ef). Thus e = f , a contradiction. Therefore,
ef = 0, and so Mℓ(R) (resp. Mr(R)) is orthogonal. The converse is clear. �

Proposition 2.10. Let N ⊆ J(R) be an ideal of R such that idempotents in

R/N can be lifted to R. Then we have the following:
(1) If Sℓ(R) (resp. Sr(R)) is commuting, then Sℓ(R/N) (resp. Sr(R/N)) is

orthogonal if and only if Sℓ(R) (resp. Sr(R)) is orthogonal;
(2) If Mℓ(R) (resp. Mr(R)) is commuting, then Mℓ(R/N) (resp. Mr(R/N))

is orthogonal if and only if Mℓ(R) (resp. Mr(R)) is orthogonal.

Proof. (1) First, we will prove it in the left semicentral case. Suppose that
Sℓ(R/N) is orthogonal. Let e, f ∈ Sℓ(R) (e 6= f) be arbitrary. Clearly, ē, f̄ ∈
Sℓ(R/N). Assume that e, f 6= 0. If ē = f̄ , then e = f by Proposition 2.8, which
is a contradiction. Thus ē 6= f̄ . Since Sℓ(R/N) is orthogonal, ēf̄ = f̄ ē = 0̄,
and so ef, fe ∈ N . By Proposition 2.1, ef, fe ∈ I(R), and then ef, fe ∈
I(R) ∩ N ⊆ I(R) ∩ J(R) = {0}. Hence Sℓ(R) is orthogonal. The converse is
clear. Similarly, we can prove it in the right semicentral case.

(2) Note that if e ∈ R is a primitive idempotent, then ē ∈ R/N is also
a primitive idempotent by [5, Proposition 21.22]. Hence it follows from the
similar argument given in the proof of (1). �

Remark 2. Let N ⊆ J(R) be an ideal of a ring R such that idempotents in R/N
can be lifted to R. By Proposition 2.8, we note that if Sℓ(R) (resp. Mℓ(R),
Mr(R)) is commuting, then |Sℓ(R)| = |Sℓ(R/N)| (resp. |Mℓ(R)| = |Mℓ(R/N)|,
|Mr(R)| = |Mr(R/N)|) where |S| is the cardinality of a set S.

Corollary 2.11. Let N ⊆ J(R) be a nil ideal of a ring R in which every idem-

potent is central. Then I(R) is orthogonal if and only if I(R/N) is orthogonal.

Proof. It follows from Lemma 2.5 and Proposition 2.10. �

Proposition 2.12. For an idempotent e of a ring R the following conditions

are equivalent:

(1) Every e ∈ Mℓ(R) (resp. e ∈ Mr(R)) is central;



SEMICENTRAL IDEMPOTENTS IN A RING 469

(2) re = er for all e ∈ Mℓ(R) (resp. e ∈ Mr(R)) and all units r ∈ R;

(3) re = er for all e ∈ Mℓ(R) (resp. e ∈ Mr(R)) and all nilpotent elements

r ∈ R;
(4) Mℓ(R) (resp. Mr(R)) is commuting;
(5) ef = fe for all f ∈ Mℓ(R) (resp. f ∈ Mr(R)) which are isomorphic to

e;
(6) (ef)n = (fe)n for all f ∈ Mℓ(R) (resp. f ∈ Mr(R)) which are isomor-

phic to e where n is some positive integer.

Proof. We will prove it in the left semicentral case. It is enough to show that
(6) ⇒ (1). Suppose that the condition (6) holds and assume that there exists
e ∈ Mℓ(R) such that e is not central. Then ea 6= ae for some a ∈ R. Consider
f = e + ea(1 − e). Clearly e 6= f , and f ∈ Sℓ(R) by Remark 1. Since f = ef
and e = fe, f is isomorphic to e. We note that f is a primitive idempotent
of R. Indeed, since eR = efeR ⊆ efR ⊆ eR, eR = efR = fR, and so f is a
primitive idempotent of R. Therefore, e = (fe)n 6= (ef)n = f for any positive
integer n, which contradicts to the assumption (6). Hence e ∈ Mℓ(R) is central.

Similarly, we can also prove it in the right semicentral case. �

Remark 3. It is clear that if M(R) (resp. Mℓ(R), Mr(R)) is commuting, then
M(R) (resp. Mℓ(R), Mr(R)) is multiplicative. But the converse may not hold.
Indeed, let R be the 2 by 2 matrix ring over Z2. Then we check that

Mℓ(R) =

{(

1 0
0 0

)

,

(

1 1
0 0

)}

(resp. Mr(R) =

{(

0 0
0 1

)

,

(

0 1
0 1

)}

)

and so Mℓ(R) (resp. Mr(R)) is multiplicative but not commuting.

3. Some rings having a complete set of centrally primitive

idempotents

Proposition 3.1. If a ring R has a complete set of left (or right) semicentrally

primitive idempotents, then ci is central for all i = 1, . . . , n.

Proof. Let {c1, c2, . . . , cn} be a complete set {c1, c2, . . . , cn} of left semicentrally
primitive idempotents. Then 1 = c1 + c2 + · · · + cn, and so r = rc1 + rc2 +
· · ·+ rcn = c1rc1 + c2rc2 + · · ·+ cnrcn for all r ∈ R. Thus cir = circi = rci for
all i = 1, . . . , n, and so ci is central for all i = 1, . . . , n. If {c1, c2, . . . , cn} is a
complete set {c1, c2, . . . , cn} of right semicentrally primitive idempotents, then
ci is central for all i = 1, . . . , n by the similar argument. �

Proposition 3.1 tells us that a ring R has a complete set of left (or right)
semicentrally primitive idempotents if and only if a ring R has a complete set
of centrally primitive idempotents. In [5, Proposition 22.1], it was shown that
if R has a complete set {c1, c2, . . . , cn} of centrally primitive idempotents, then
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any central idempotents is a sum of a subset of {c1, c2, . . . , cn}. On the other
hand, we have the following:

Proposition 3.2. If a ring R has a complete set of centrally primitive idem-

potents, then any nonzero left (resp. right) semicentral idempotent of R is a

sum of orthogonal left (resp. right) semicentral idempotents of R.

Proof. Case 1. Left case.
Let e ∈ R be any nonzero left semicentral idempotent and {c1, c2, . . . , cn}

be a complete set of centrally primitive idempotents of R. Since 1 = c1 +
c2 + · · · + cn, e = ec1 + ec2 + · · · + ecn. If eci 6= 0 for some i, then eci is a
primitive idempotent of R by [3, Theorem 2.10]. On the other hand, for each
i (eci)r(eci) = e(rci)e = r(eci) for all r, and so each eci is a left semicentral
idempotent of R. Thus if eci 6= 0 for some i, then eci is a left semicentral
primitive idempotent of R, so e =

∑

eci 6=0 eci, which is a sum of left semicentral

primitive idempotents of R. Clearly, {eci : eci 6= 0} is orthogonal.

Case 2. Right case.
It follows from the similar argument given in the proof of Case 1. �

Corollary 3.3. If a ring R has a complete set {c1, c2, . . . , cn} of centrally

primitive idempotents, then any central idempotent is a sum of a subset of

{c1, c2, . . . , cn}.

Proof. Let e ∈ R be any central idempotent. Then e =
∑

eci 6=0 eci, which
is a sum of primitive left semicentral idempotents of R as in the proof of
Proposition 3.2. Note that if eci 6= 0 for some i, then eci = ci. Therefore, we
have e =

∑

eci 6=0 eci =
∑

eci 6=0 ci. �

Proposition 3.4. Let R be a ring which has a complete set of primitive idem-

potents. Then eRe has also a complete set of primitive idempotents for all

nonzero left (resp. right) semicentral idempotent e ∈ R.

Proof. Case 1. Left case.
Let e ∈ R be an arbitrary nonzero left semicentral idempotent and {e1, e2,

. . . , en} be a complete set of primitive idempotents. Then 1 = e1+e2+ · · ·+en,
and so e = e1e+ e2e+ · · ·+ ene. Since e ∈ R is a left semicentral idempotent,
eie = eeie for all i. If eeie 6= 0 for some i, then eeie is a primitive idempotent
of eRe by [1, Lemma 1.5]. Note that {eeie : eeie 6= 0} is orthogonal and
e =

∑

eeie6=0 eeie. Therefore, {eeie : eeie 6= 0} is a complete set of primitive
idempotents of eRe.

Case 2. Right case.
It follows from the similar argument given in the proof of Case 1. �

Proposition 3.5. If R is a ring which has a complete set T of primitive

idempotents, then we have the following:

(1) If there exists a primitive idempotent e ∈ R such that ef = fe for all

f ∈ T , then e ∈ T ;
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(2) All centrally primitive idempotents of R are contained in T;
(3) The set of all centrally primitive idempotents of R forms a complete

set of centrally primitive idempotents of R.

Proof. (1) Let T = {e1, e2, . . . , en}. Then 1 = e1 + e2 + · · · + en, and so
e = e1e+e2e+ · · ·+ene. Note that if eie 6= 0 for some i, then e = eie+(e−eie)
such that eie(e − eie) = (e − eie)eie = 0, i.e., e is a sum of two orthogonal
idempotents eie, e− eie of R. Since e is a primitive idempotent of R, e = eie.
Similarly, if eie 6= 0 for some i, then ei = eie+(ei−eie) such that eie(ei−eie) =
(ei − eie)eie = 0, i.e., ei is a sum of orthogonal idempotents eie, ei − eie of R.
Since ei is a primitive idempotent of R, ei = eie. Hence e = eie = ei ∈ T .

(2) It follows from (1).
(3) Since R has a complete set of primitive idempotents, R has also a com-

plete set T1 of centrally primitive idempotents of R. Assume that there ex-
ists a centrally primitive idempotent e ∈ R such that e /∈ T1. Let T1 =
{c1, c2, . . . , cn}. Then 1 = c1 + c2 + · · · + cn, and so e = c1e + c2e + · · · +
cne. Note that if cie 6= 0 for some i, then e = cie + (e − cie) such that
cie(e − cie) = (e − cie)cie = 0, i.e., e is a sum of two orthogonal central idem-
potents cie, e − cie of R. Since e is a centrally primitive idempotent of R,
e = cie ∈ R. Similarly, if cie 6= 0 for some i, then ci = cie + (ci − cie) such
that cie(ci − cie) = (ci − cie)cie = 0, i.e., ci is a sum of orthogonal central
idempotents cie, ci − cie of R. Since ci is a centrally primitive idempotent of
R, ci = cie. Hence e = cie = ci ∈ T1, a contradiction. Hence T1 consists of all
centrally primitive idempotents of R. �

Remark 4. Let R be a ring which has a complete set of primitive idempotents.
By Proposition 3.5, we note that (1) there exist a finite number of centrally
primitive idempotents in R which forms a complete set of centrally primitive
idempotents; (2) in particular, if R is an abelian ring (a ring in which every
idempotent is central), then all primitive idempotents of R forms a complete
set of primitive idempotents.
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