J. Korean Math. Soc. ${\bf 51}$ (2014), No. 3, pp. 463–472 http://dx.doi.org/10.4134/JKMS.2014.51.3.463

SEMICENTRAL IDEMPOTENTS IN A RING

JUNCHEOL HAN, YANG LEE, AND SANGWON PARK

ABSTRACT. Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R and $S_{\ell}(R)$ (resp. $S_r(R)$) be the set of all left (resp. right) semicentral idempotents in R. In this paper, the following are investigated: (1) $e \in S_{\ell}(R)$ (resp. $e \in S_r(R)$) if and only if re = ere (resp. er = ere) for all nilpotent elements $r \in R$ if and only if $fe \in I(R)$ (resp. $ef \in I(R)$) for all $f \in I(R)$ if and only if fe = efe (resp. ef = efe) for all $f \in I(R)$ if and only if fe = efe (resp. ef = efe) for all $f \in I(R)$ which are isomorphic to e if and only if $(fe)^n = (efe)^n$ (resp. $(ef)^n = (efe)^n)$ for all $f \in I(R)$ which are isomorphic to e where n is some positive integer; (2) For a ring R having a complete set of centrally primitive idempotents, every nonzero left (resp. right) semicentral idempotent is a finite sum of orthogonal left (resp. right) semicentral primitive idempotents, and eRehas also a complete set of primitive idempotents for any $0 \neq e \in S_{\ell}(R)$ (resp. $0 \neq e \in S_r(R)$).

1. Introduction and basic definitions

Throughout this paper, let R be a ring with identity 1, J(R) denote the Jacobson radical of R and I(R) be the set of all idempotents of R. An idempotent $e \in R$ is left (resp. right) semicentral in R if Re = eRe (resp. eR = eRe) (refer [1]). It is easy to show that $e \in R$ is left (resp. right) semicentral in R if and only if ae = eae (resp. ea = eae) for all $a \in R$. Two idempotents $e, f \in R$ are said to be *isomorphic* if there exist $a, b \in R$ such that e = ab, f = ba (refer [2, 5]). In Section 2, the following equivalent conditions are obtained:

- (1) $e \in R$ is left (resp. right) semicentral;
- (2) re = er for all units $r \in R$;
- (3) re = ere (resp. er = ere) for all nilpotent elements $r \in R$;
- (4) fe (resp. ef) is an idempotent for all idempotents $f \in R$;
- (5) fe = efe (resp. ef = efe) for all idempotents $f \in R$;
- (6) fe = efe (resp. ef = efe) for all idempotents $f \in R$ which are isomorphic to e;

©2014 Korean Mathematical Society

Received July 31, 2013; Revised January 3, 2014.

²⁰¹⁰ Mathematics Subject Classification. 17C27.

Key words and phrases. left (resp. right) semicentral idempotent, complete set of (centrally) primitive idempotents.

This work was supported by research funds from Dong-A University.

(7) $(fe)^n = (efe)^n$ (resp. $(ef)^n = (efe)^n$) for all idempotents $f \in R$ which are isomorphic to e where n is some positive integer.

A subset S of a ring R is called *commuting* if ef = fe for all $e, f \in S$. Recall that two idempotents $e, f \in R$ are said to be orthogonal if ef = fe = 0. Also recall that an idempotent $e \in R$ is said to be *primitive* if it can not be written as a sum of two nonzero orthogonal idempotents, or equivalently, eR (resp. Re) is indecomposable as a right (resp. left) R-module. Let M(R) be the set of zero and all primitive idempotents of R, $S_{\ell}(R)$ (resp. $S_r(R)$) be the set of all left (resp. right) semicentral idempotents in R, and $M_{\ell}(R) = M(R) \cap S_{\ell}(R)$ (resp. $M_r(R) = M(R) \cap S_r(R)$). A subset S of I(R) is also said to be additive in I(R) if for all $e, f \in S$ $(e \neq f), e + f \in I(R)$ (refer [4]). For example, if R is a Boolean ring or a direct product of local rings, then M(R) is additive in I(R). In Section 2, it was also shown that (1) $M_{\ell}(R)$ (resp. $M_r(R)$) is additive in I(R) if and only if $M_{\ell}(R)$ (resp. $M_r(R)$) is orthogonal; (2) Let $N \subseteq J(R)$ be an ideal of R such that idempotents in R/N can be lifted to R. (i) If $S_{\ell}(R)$ (resp. $S_r(R)$) is commuting, then $S_\ell(R/N)$ (resp. $S_r(R/N)$) is additive in I(R/N) if and only if $S_{\ell}(R)$ (resp. $S_r(R)$) is additive in I(R); (ii) If $M_{\ell}(R)$ (resp. $M_r(R)$) is commuting, then $M_\ell(R/N)$ (resp. $M_r(R/N)$) is additive in I(R/N) if and only if $M_{\ell}(R)$ (resp. $M_r(R)$) is additive in I(R).

Recall that a central idempotent c of a ring R is said to be centrally primitive in R if $c \neq 0$ and c cannot be written as a sum of two nonzero orthogonal central idempotents in R (equivalently, cR is indecomposable as a ring). Also, R is said to have a complete set of primitive (resp. centrally primitive) idempotents if there exists a finite set of orthogonal primitive (resp. centrally primitive) idempotents whose sum is the identity of R [5, Sects. 21 and 22]. It was shown that a ring R having a complete set of primitive idempotents has a complete set of centrally primitive idempotents [5, Theorem 22.5]. By [5, Proposition 22.1], it was also shown that if R has a complete set $\{c_1, c_2, \ldots, c_n\}$ of centrally primitive idempotents, then any central idempotent is a sum of a subset of $\{c_1, c_2, \ldots, c_n\}$. In Section 3, it was shown that (1) for a ring R having a complete set T of centrally primitive idempotents, any nonzero left (resp. right) semicentral idempotent of R is a sum of orthogonal left (resp. right) semicentral primitive idempotents of R and eRe has also a complete set of centrally primitive idempotents for any nonzero idempotent $e \in R$; (2) for a ring R having a complete set T of primitive idempotents, any complete set of centrally primitive idempotents is contained in T and it consists of all centrally primitive idempotents of R.

2. Properties of semicentral idempotents in a ring

In this section, we will find some properties of left (resp. right) semicentral idempotents of a ring R.

Proposition 2.1. For an idempotent e of a ring R the following conditions are equivalent:

- (1) $e \in R$ is left (resp. right) semicentral;
- (2) re = ere (resp. er = ere) for all units $r \in R$;
- (3) re = ere (resp. er = ere) for all nilpotent elements $r \in R$;
- (4) fe (resp. ef) is an idempotent for all idempotents $f \in R$;
- (5) fe = efe (resp. ef = efe) for all idempotents $f \in R$;
- (6) fe = efe (resp. ef = efe) for all idempotents $f \in R$ which are isomorphic to e;
- (7) $(fe)^n = (efe)^n$ (resp. $(ef)^n = (efe)^n$) for all idempotents $f \in R$ which are isomorphic to e where n is some positive integer.

Proof. First, we will prove it in the left semicentral case. $(1) \Rightarrow (2), (3), (4)$ and $(5) \Rightarrow (6) \Rightarrow (7)$ are obvious.

 $(2) \Rightarrow (3)$: Suppose that the condition (2) holds. Let r be an arbitrary nilpotent element of R. Then 1+r is a unit of R. By assumption (2), (1+r)e = e(1+r)e, and then re = ere. Hence (3) holds.

 $(3) \Rightarrow (1)$: Suppose that the condition (3) holds. Let $a \in R$ be arbitrary. Consider the element $r = (1 - e)ae \in R$. Then $r^2 = 0$, and so re = ere and this yields (1 - e)ae = 0. Thus ae = eae, and so e is left semicentral.

 $(4) \Rightarrow (5)$: Suppose that the condition (4) holds. Since $1 - f \in R$ are idempotents for all idempotents $f \in R$, $(1 - f)e = ((1 - f)e)^2$ by assumption. Thus $e - fe = (1 - f)e = ((1 - f)e)^2 = e - fe - efe + (fe)^2 = e - efe$, so fe = efe for all idempotents $f \in R$.

 $(7) \Rightarrow (1)$: Suppose that the condition (6) holds and assume that e is not left semicentral. Then there is $a \in R$ such that $ae - eae \neq 0$. Consider f = e + ae - eae. Then $f^2 = f \neq e$, fe = f and ef = e, so these are isomorphic idempotents. Therefore, $e = (efe)^n \neq (fe)^n = f$ for any positive integer n, which contradicts to the assumption (6). Hence e is left semicentral.

Next, we can prove it in the right semicentral case by the similar argument used in the left semicentral case. $\hfill \Box$

Corollary 2.2. For an idempotent e of a ring R the following conditions are equivalent:

- (1) $e \in R$ is central;
- (2) re = er for all units $r \in R$;
- (3) re = er for all nilpotent elements $r \in R$;
- (4) fe and ef are idempotents for all idempotents $f \in R$;
- (5) fe = ef for all idempotents $f \in R$;
- (6) fe = ef for all idempotents $f \in R$ which are isomorphic to e;
- (7) $(fe)^n = (ef)^n$ for all idempotents $f \in R$ which are isomorphic to e where n is some positive integer.

Proof. It follows from Proposition 2.1.

Corollary 2.3. For a ring R an idempotent e of R is left semicentral if and only if 1 - e is right semicentral.

Proof. Let e be a left semicentral idempotent of R. Then fe = efe for all idempotents $f \in R$ by Proposition 2.1. Therefore, (1-e)f(1-e) = f-ef-fe+efe = f - ef = f(1-e), which implies that 1-e is a right semicentral idempotent of R by Proposition 2.1. The converse holds by the similar argument.

Example 1. Let R be the 2 by 2 upper triangular matrix ring over \mathbb{Z}_3 where \mathbb{Z}_3 is a field of integers modulo 3. Consider two idempotents $e = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ of R. Since ef is not an idempotent of R, e is not right semicentral by Proposition 2.1. But we can checked that e is left semicentral. By Corollary 2.3, 1 - e is right semicentral idempotent but not left semicentral idempotent of R.

Remark 1. Let $S_{\ell}(R)$ (resp. $S_r(R)$) be the set of all left (resp. right) semicentral idempotents of a ring R. Then we note the following:

(1) $S_{\ell}(R)$ (resp. $S_r(R)$) is closed under multiplication.

(2) $S_{\ell}(R)$ (resp. $S_r(R)$) is closed under conjugation, i.e., $ueu^{-1} \in S_{\ell}(R)$ (resp. $ufu^{-1} \in S_r(R)$) for all $e \in S_{\ell}(R)$ (resp. $f \in S_r(R)$) and all units $u \in R$. (3) $e \in S_{\ell}(R)$ (resp. $f \in S_r(R)$) if and only if $e + ea(1-e) \in S_{\ell}(R)$ (resp. $f + fa(1-f) \in S_r(R)$) for each $a \in R$.

Note that if e and e' = e + ea(1 - e) $(a \in R)$ are idempotents of a ring R, then $e + ea(1 - e) = ueu^{-1}$ for some unit $u \in R$ by [5, Exercise 21.4, page 333]. But the converse may not be true by the following example:

Example 2. Let *R* be the 2 by 2 matrix ring over \mathbb{Z}_2 where \mathbb{Z}_2 is a field of integers modulo 2. Consider the idempotent $e = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ of *R*. Then we check that

$$\{e + ea(1-e)|a \in R\} = \left\{ \begin{pmatrix} 0 & 1\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 1 & 0 \end{pmatrix} \right\}$$

Take $f^2 = f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Then $f \notin \{e + ea(1 - e) | a \in R\}$. On the other hand, e and f are conjugate since $e = ufu^{-1}$ for some unit $u = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in R$.

Now we raise the following question:

Question 1. Let e, e' be isomorphic idempotents of a ring R. If e is left (right) semicentral, then is e' left (right) semicentral?

Recall that [5, Exercise 21.16, page 334] if eRe is a semilocal ring, then e, e' are isomorphic if and only if $e' = ueu^{-1}$ for some unit $u \in R$. Hence if eRe is a semilocal ring, then the answer to the above question is true by Remark 1-(2).

Lemma 2.4. Let R be a ring and S be a subset of R. Then S is additive in I(R) if and only if S is commuting and 2ef = 0 for all $e, f \in S$ ($e \neq f$).

Proof. Suppose that S is additive in I(R). Let $e, f \in S_{\ell}(R)$ $(e \neq f)$ be arbitrary. Then $e + f = (e + f)^2 = e + ef + fe + f$, and so ef = -fe. Thus ef = e(ef) = e(-fe) = (-ef)e = (fe)e = fe. Hence S is commuting and also 2ef = 0 for all $e, f \in S$ $(e \neq f)$. The converse is clear.

Lemma 2.5. For a ring R the following conditions are equivalent:

(1) $S_{\ell}(R)$ is commuting;

- (2) $S_r(R)$ is commuting;
- (3) $S_{\ell}(R) = B(R);$
- $(4) S_r(R) = B(R).$

Proof. (1) \Leftrightarrow (2) follows from Corollary 2.3. (3) \Rightarrow (1) and (4) \Rightarrow (1) are obvious.

 $(1) \Rightarrow (3)$: Assume that $S_{\ell}(R)$ is commuting and let $e \in S_{\ell}(R)$ and $a \in R$ be arbitrary. Write f = e + ea(1 - e). Then $f \in S_{\ell}(R)$ by Remark 1-(3). Since $S_{\ell}(R)$ is commuting, e = fe = ef = f = e + ea(1 - e), and so ea = eae = ae. Hence e is central, and thus (1) implies (3). Similarly, we have $(2) \Rightarrow (4)$. \Box

Proposition 2.6. For a ring R the following conditions are equivalent:

- (1) $S_{\ell}(R)$ (resp. $S_r(R)$) is additive in I(R);
- (2) $S_{\ell}(R)$ (resp. $S_r(R)$) is commuting and 2e = 0 for all $e \in S_{\ell}(R)$ (resp. $e \in S_r(R)$);
- (3) $S_{\ell}(R)$ (resp. $S_r(R)$) is commuting and the characteristic of R is equal to 2.

Proof. First, we will prove it in the left semicentral case.

 $(1) \Rightarrow (2)$: Suppose that $S_{\ell}(R)$ is additive in I(R). Then $S_{\ell}(R)$ is commuting by Lemma 2.4. Let $e \in S_{\ell}(R) (e \neq 1)$ be arbitrary. Since $S_{\ell}(R)$ is additive in I(R) and $1, e \in S_{\ell}(R), 1 + e \in I(R)$, and then 2e = 0.

 $(2) \Rightarrow (3)$: Suppose that $S_{\ell}(R)$ is commuting and 2e = 0 for all $e \in S_{\ell}(R)$. Since $1 - e \in S_r(R)$ by Corollary 2.3 and $S_{\ell}(R) = S_r(R)$ by Lemma 2.5, we have 2(1-e) = 0 by assumption, and so $2 \cdot 1 = 2e = 0$. Hence the characteristic of R is equal to 2.

 $(3) \Rightarrow (1)$: Obvious.

Next, we can prove it in the right semicentral case by the similar argument used in the left semicentral case. $\hfill\square$

Corollary 2.7. Let R be a ring. Then B(R) is additive in I(R) if and only if B(R) forms a Boolean ring.

Proof. It follows from Lemma 2.5 and Proposition 2.6.

Note that [5, Exercise 21.13, page 334] if e, f are commuting idempotents of a ring R such that $\bar{e} = \bar{f} \in R/N$ where N is a nil ideal of R, then e = f. It is well known that if N is a nil ideal of a ring R, then $N \subseteq J(R)$. In general, we have the following:

Proposition 2.8. Let $N \subseteq J(R)$ be an ideal of a ring R. If $e, f \in R$ are commuting idempotents such that $\bar{e} = \bar{f} \in R/N$, then e = f.

Proof. Since $\bar{e} = \bar{f} \in R/N$, $e - f \in N$. Since ef = fe, we have $(e - f)^2 = e - 2ef + f = (e - f)^4$, and so $(e - f)^2 \in I(R)$. Thus $(e - f)^2 \in I(R) \cap N \subseteq I(R) \cap J(R)$. Since $I(R) \cap J(R) = \{0\}$, $(e - f)^2 = e - 2ef + f = 0$. Hence

e + f = 2ef (*). By multiplying with e (resp. f) from the both sides of (*), we have e = ef (resp. f = ef). Hence e - f = ef - ef = 0.

Recall $M_{\ell}(R)$ (resp. $M_r(R)$) is the set of all left (resp. right) semicentral primitive idempotents of a ring R.

Proposition 2.9. Let R be a ring R. Then $M_{\ell}(R)$ (resp. $M_r(R)$) is additive in I(R) if and only if $M_{\ell}(R)$ (resp. $M_r(R)$) is orthogonal.

Proof. Suppose that $M_{\ell}(R)$ (resp. $M_r(R)$) is additive in I(R) and assume that there exist $e, f \in M_{\ell}(R)$ (resp. $e, f \in M_r(R)$) such that $ef \neq 0$. Since $M_{\ell}(R)$ (resp. $M_r(R)$) is additive in $I(R), M_{\ell}(R)$ (resp. $M_r(R)$) is commuting by Lemma 2.4, and so ef = fe. Note that e = ef + (e - ef) and ef(e - ef) = (e - ef)ef = 0. Since e is primitive and $ef \neq 0$, e = ef. By the similar argument, we have $f = fe \ (= ef)$. Thus e = f, a contradiction. Therefore, ef = 0, and so $M_{\ell}(R)$ (resp. $M_r(R)$) is orthogonal. The converse is clear. \Box

Proposition 2.10. Let $N \subseteq J(R)$ be an ideal of R such that idempotents in R/N can be lifted to R. Then we have the following:

(1) If $S_{\ell}(R)$ (resp. $S_r(R)$) is commuting, then $S_{\ell}(R/N)$ (resp. $S_r(R/N)$) is orthogonal if and only if $S_{\ell}(R)$ (resp. $S_r(R)$) is orthogonal;

(2) If $M_{\ell}(R)$ (resp. $M_r(R)$) is commuting, then $M_{\ell}(R/N)$ (resp. $M_r(R/N)$) is orthogonal if and only if $M_{\ell}(R)$ (resp. $M_r(R)$) is orthogonal.

Proof. (1) First, we will prove it in the left semicentral case. Suppose that $S_{\ell}(R/N)$ is orthogonal. Let $e, f \in S_{\ell}(R)$ $(e \neq f)$ be arbitrary. Clearly, $\bar{e}, \bar{f} \in S_{\ell}(R/N)$. Assume that $e, f \neq 0$. If $\bar{e} = \bar{f}$, then e = f by Proposition 2.8, which is a contradiction. Thus $\bar{e} \neq \bar{f}$. Since $S_{\ell}(R/N)$ is orthogonal, $\bar{e}\bar{f} = \bar{f}\bar{e} = \bar{0}$, and so $ef, fe \in N$. By Proposition 2.1, $ef, fe \in I(R)$, and then $ef, fe \in I(R) \cap N \subseteq I(R) \cap J(R) = \{0\}$. Hence $S_{\ell}(R)$ is orthogonal. The converse is clear. Similarly, we can prove it in the right semicentral case.

(2) Note that if $e \in R$ is a primitive idempotent, then $\bar{e} \in R/N$ is also a primitive idempotent by [5, Proposition 21.22]. Hence it follows from the similar argument given in the proof of (1).

Remark 2. Let $N \subseteq J(R)$ be an ideal of a ring R such that idempotents in R/N can be lifted to R. By Proposition 2.8, we note that if $S_{\ell}(R)$ (resp. $M_{\ell}(R)$, $M_r(R)$) is commuting, then $|S_{\ell}(R)| = |S_{\ell}(R/N)|$ (resp. $|M_{\ell}(R)| = |M_{\ell}(R/N)|$, $|M_r(R)| = |M_r(R/N)|$) where |S| is the cardinality of a set S.

Corollary 2.11. Let $N \subseteq J(R)$ be a nil ideal of a ring R in which every idempotent is central. Then I(R) is orthogonal if and only if I(R/N) is orthogonal.

 \square

Proof. It follows from Lemma 2.5 and Proposition 2.10.

Proposition 2.12. For an idempotent e of a ring R the following conditions are equivalent:

(1) Every $e \in M_{\ell}(R)$ (resp. $e \in M_r(R)$) is central;

- (2) re = er for all $e \in M_{\ell}(R)$ (resp. $e \in M_r(R)$) and all units $r \in R$;
- (3) re = er for all $e \in M_{\ell}(R)$ (resp. $e \in M_r(R)$) and all nilpotent elements $r \in R$;
- (4) $M_{\ell}(R)$ (resp. $M_r(R)$) is commuting;
- (5) ef = fe for all $f \in M_{\ell}(R)$ (resp. $f \in M_r(R)$) which are isomorphic to e;
- (6) $(ef)^n = (fe)^n$ for all $f \in M_\ell(R)$ (resp. $f \in M_r(R)$) which are isomorphic to e where n is some positive integer.

Proof. We will prove it in the left semicentral case. It is enough to show that $(6) \Rightarrow (1)$. Suppose that the condition (6) holds and assume that there exists $e \in M_{\ell}(R)$ such that e is not central. Then $ea \neq ae$ for some $a \in R$. Consider f = e + ea(1 - e). Clearly $e \neq f$, and $f \in S_{\ell}(R)$ by Remark 1. Since f = ef and e = fe, f is isomorphic to e. We note that f is a primitive idempotent of R. Indeed, since $eR = efeR \subseteq efR \subseteq eR$, eR = efR = fR, and so f is a primitive idempotent of R. Therefore, $e = (fe)^n \neq (ef)^n = f$ for any positive integer n, which contradicts to the assumption (6). Hence $e \in M_{\ell}(R)$ is central. Similarly, we can also prove it in the right semicentral case.

Remark 3. It is clear that if M(R) (resp. $M_{\ell}(R)$, $M_r(R)$) is commuting, then M(R) (resp. $M_{\ell}(R)$, $M_r(R)$) is multiplicative. But the converse may not hold. Indeed, let R be the 2 by 2 matrix ring over \mathbb{Z}_2 . Then we check that

$$M_{\ell}(R) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\}$$

(resp. $M_r(R) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$)

and so $M_{\ell}(R)$ (resp. $M_r(R)$) is multiplicative but not commuting.

3. Some rings having a complete set of centrally primitive idempotents

Proposition 3.1. If a ring R has a complete set of left (or right) semicentrally primitive idempotents, then c_i is central for all i = 1, ..., n.

Proof. Let $\{c_1, c_2, \ldots, c_n\}$ be a complete set $\{c_1, c_2, \ldots, c_n\}$ of left semicentrally primitive idempotents. Then $1 = c_1 + c_2 + \cdots + c_n$, and so $r = rc_1 + rc_2 + \cdots + rc_n = c_1rc_1 + c_2rc_2 + \cdots + c_nrc_n$ for all $r \in R$. Thus $c_ir = c_irc_i = rc_i$ for all $i = 1, \ldots, n$, and so c_i is central for all $i = 1, \ldots, n$. If $\{c_1, c_2, \ldots, c_n\}$ is a complete set $\{c_1, c_2, \ldots, c_n\}$ of right semicentrally primitive idempotents, then c_i is central for all $i = 1, \ldots, n$ by the similar argument.

Proposition 3.1 tells us that a ring R has a complete set of left (or right) semicentrally primitive idempotents if and only if a ring R has a complete set of centrally primitive idempotents. In [5, Proposition 22.1], it was shown that if R has a complete set $\{c_1, c_2, \ldots, c_n\}$ of centrally primitive idempotents, then

any central idempotents is a sum of a subset of $\{c_1, c_2, \ldots, c_n\}$. On the other hand, we have the following:

Proposition 3.2. If a ring R has a complete set of centrally primitive idempotents, then any nonzero left (resp. right) semicentral idempotent of R is a sum of orthogonal left (resp. right) semicentral idempotents of R.

Proof. Case 1. Left case.

Let $e \in R$ be any nonzero left semicentral idempotent and $\{c_1, c_2, \ldots, c_n\}$ be a complete set of centrally primitive idempotents of R. Since $1 = c_1 + c_2 + \cdots + c_n$, $e = ec_1 + ec_2 + \cdots + ec_n$. If $ec_i \neq 0$ for some i, then ec_i is a primitive idempotent of R by [3, Theorem 2.10]. On the other hand, for each $i \ (ec_i)r(ec_i) = e(rc_i)e = r(ec_i)$ for all r, and so each ec_i is a left semicentral idempotent of R. Thus if $ec_i \neq 0$ for some i, then ec_i is a left semicentral primitive idempotent of R, so $e = \sum_{ec_i \neq 0} ec_i$, which is a sum of left semicentral primitive idempotents of R. Clearly, $\{ec_i : ec_i \neq 0\}$ is orthogonal.

Case 2. Right case.

It follows from the similar argument given in the proof of Case 1.

Corollary 3.3. If a ring R has a complete set $\{c_1, c_2, \ldots, c_n\}$ of centrally primitive idempotents, then any central idempotent is a sum of a subset of $\{c_1, c_2, \ldots, c_n\}$.

Proof. Let $e \in R$ be any central idempotent. Then $e = \sum_{ec_i \neq 0} ec_i$, which is a sum of primitive left semicentral idempotents of R as in the proof of Proposition 3.2. Note that if $ec_i \neq 0$ for some i, then $ec_i = c_i$. Therefore, we have $e = \sum_{ec_i \neq 0} ec_i = \sum_{ec_i \neq 0} c_i$.

Proposition 3.4. Let R be a ring which has a complete set of primitive idempotents. Then eRe has also a complete set of primitive idempotents for all nonzero left (resp. right) semicentral idempotent $e \in R$.

Proof. Case 1. Left case.

Let $e \in R$ be an arbitrary nonzero left semicentral idempotent and $\{e_1, e_2, \ldots, e_n\}$ be a complete set of primitive idempotents. Then $1 = e_1 + e_2 + \cdots + e_n$, and so $e = e_1e + e_2e + \cdots + e_ne$. Since $e \in R$ is a left semicentral idempotent, $e_ie = ee_ie$ for all *i*. If $ee_ie \neq 0$ for some *i*, then ee_ie is a primitive idempotent of eRe by [1, Lemma 1.5]. Note that $\{ee_ie : ee_ie \neq 0\}$ is orthogonal and $e = \sum_{ee_ie\neq 0} ee_ie$. Therefore, $\{ee_ie : ee_ie \neq 0\}$ is a complete set of primitive idempotents of eRe.

Case 2. Right case.

It follows from the similar argument given in the proof of Case 1. \Box

Proposition 3.5. If R is a ring which has a complete set T of primitive idempotents, then we have the following:

(1) If there exists a primitive idempotent $e \in R$ such that ef = fe for all $f \in T$, then $e \in T$;

- (2) All centrally primitive idempotents of R are contained in T;
- (3) The set of all centrally primitive idempotents of R forms a complete set of centrally primitive idempotents of R.

Proof. (1) Let $T = \{e_1, e_2, \ldots, e_n\}$. Then $1 = e_1 + e_2 + \cdots + e_n$, and so $e = e_1e + e_2e + \cdots + e_ne$. Note that if $e_ie \neq 0$ for some *i*, then $e = e_ie + (e - e_ie)$ such that $e_ie(e - e_ie) = (e - e_ie)e_ie = 0$, i.e., *e* is a sum of two orthogonal idempotents $e_ie, e - e_ie$ of *R*. Since *e* is a primitive idempotent of *R*, $e = e_ie$. Similarly, if $e_ie \neq 0$ for some *i*, then $e_i = e_ie + (e_i - e_ie)$ such that $e_ie(e_i - e_ie) = (e_i - e_ie)e_ie = 0$, i.e., e_i is a sum of orthogonal idempotents $e_ie, e_i - e_ie$ of *R*. Since e_i is a primitive idempotent $e_ie(e_i - e_ie) = (e_i - e_ie)e_ie = 0$, i.e., e_i is a sum of orthogonal idempotents $e_ie, e_i - e_ie$ of *R*. Since e_i is a primitive idempotent of *R*, $e_i = e_ie$. Hence $e = e_ie = e_i \in T$.

(2) It follows from (1).

(3) Since R has a complete set of primitive idempotents, R has also a complete set T_1 of centrally primitive idempotents of R. Assume that there exists a centrally primitive idempotent $e \in R$ such that $e \notin T_1$. Let $T_1 = \{c_1, c_2, \ldots, c_n\}$. Then $1 = c_1 + c_2 + \cdots + c_n$, and so $e = c_1e + c_2e + \cdots + c_ne$. Note that if $c_ie \neq 0$ for some *i*, then $e = c_ie + (e - c_ie)$ such that $c_ie(e - c_ie) = (e - c_ie)c_ie = 0$, i.e., *e* is a sum of two orthogonal central idempotents $c_ie, e - c_ie$ of R. Since *e* is a centrally primitive idempotent of R, $e = c_ie \in R$. Similarly, if $c_ie \neq 0$ for some *i*, then $c_i = c_ie + (c_i - c_ie)$ such that $c_ie(c_i - c_ie) = (c_i - c_ie)c_ie = 0$, i.e., c_i is a sum of orthogonal central idempotents $c_ie, c_i - c_ie$ of R. Since c_i is a centrally primitive idempotent of R, $c_i = c_ie$. Hence $e = c_ie = c_i \in T_1$, a contradiction. Hence T_1 consists of all centrally primitive idempotents of R.

Remark 4. Let R be a ring which has a complete set of primitive idempotents. By Proposition 3.5, we note that (1) there exist a finite number of centrally primitive idempotents in R which forms a complete set of centrally primitive idempotents; (2) in particular, if R is an abelian ring (a ring in which every idempotent is central), then all primitive idempotents of R forms a complete set of primitive idempotents.

References

- G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, *Triangular matrix repre*sentations, J. Algebra 230 (2000), no. 2, 558–595.
- [2] G. Călaugăreanu, Rings with lattices of idempotents, Comm. Algebra 38 (2010), no. 3, 1050–1056.
- [3] H. K. Grover, D. Khurana, and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), no. 8, 2583–2590.
- [4] J. Han and S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), no. 9, 3551–3557.
- [5] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc., 1991.

JUNCHEOL HAN DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA *E-mail address*: jchan@pusan.ac.kr

YANG LEE DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA *E-mail address*: ylee@pusan.ac.kr

SANGWON PARK DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY PUSAN 604-714, KOREA *E-mail address:* swpark@dau.ac.kr