• 제목/요약/키워드: complete monotonic function

검색결과 5건 처리시간 0.021초

INEQUALITIES AND COMPLETE MONOTONICITY FOR THE GAMMA AND RELATED FUNCTIONS

  • Chen, Chao-Ping;Choi, Junesang
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1261-1278
    • /
    • 2019
  • It is well-known that if ${\phi}^{{\prime}{\prime}}$ > 0 for all x, ${\phi}(0)=0$, and ${\phi}/x$ is interpreted as ${\phi}^{\prime}(0)$ for x = 0, then ${\phi}/x$ increases for all x. This has been extended in [Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions, J. Math. Anal. Appl. 336 (2007), 812-822]. In this paper, we extend the above result to the very general cases, and then use it to prove some (logarithmically) completely monotonic functions related to the gamma function. We also establish some inequalities for the gamma function and generalize some known results.

COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

  • Qi, Feng;Zhang, Xiao-Jing
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권2호
    • /
    • pp.141-145
    • /
    • 2014
  • In the paper, by directly verifying an inequality which gives a lower bound for the first order modified Bessel function of the first kind, the authors supply a new proof for the complete monotonicity of a difference between the exponential function $e^{1/t}$ and the trigamma function ${\psi}^{\prime}(t)$ on (0, ${\infty}$).

SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS RELATED TO THE GAMMA FUNCTION

  • Qi, Feng;Guo, Bai-Ni
    • 대한수학회지
    • /
    • 제47권6호
    • /
    • pp.1283-1297
    • /
    • 2010
  • In this article, the logarithmically complete monotonicity of some functions such as $\frac{1}{[\Gamma(x+1)]^{1/x}$, $\frac{[\Gamma(x+1)]^{1/x}}{x^\alpha}$, $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^\alpha}$ and $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha})}{[\Gamma(x+1)^{1/x}}$ for $\alpha{\in}\mathbb{R}$ on ($-1,\infty$) or ($0,\infty$) are obtained, some known results are recovered, extended and generalized. Moreover, some basic properties of the logarithmically completely monotonic functions are established.